45 research outputs found

    Atom-optics hologram in the time domain

    Full text link
    The temporal evolution of an atomic wave packet interacting with object and reference electromagnetic waves is investigated beyond the weak perturbation of the initial state. It is shown that the diffraction of an ultracold atomic beam by the inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram, whose thickness is proportional to the interaction time. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis a method for reconstruction of the object image with matter waves is offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change

    Atom focusing by far-detuned and resonant standing wave fields: Thin lens regime

    Get PDF
    The focusing of atoms interacting with both far-detuned and resonant standing wave fields in the thin lens regime is considered. The thin lens approximation is discussed quantitatively from a quantum perspective. Exact quantum expressions for the Fourier components of the density (that include all spherical aberration) are used to study the focusing numerically. The following lens parameters and density profiles are calculated as functions of the pulsed field area θ\theta : the position of the focal plane, peak atomic density, atomic density pattern at the focus, focal spot size, depth of focus, and background density. The lens parameters are compared to asymptotic, analytical results derived from a scalar diffraction theory for which spherical aberration is small but non-negligible (θ1\theta \gg 1). Within the diffraction theory analytical expressions show that the focused atoms in the far detuned case have an approximately constant background density 0.5(10.635θ1/2)0.5(1-0.635\theta ^{- 1/2}) while the peak density behaves as % 3.83\theta ^{1/2}, the focal distance or time as θ1(1+1.27θ1/2)\theta ^{-1}(1+1.27\theta ^{- 1/2}), the focal spot size as 0.744θ3/40.744\theta ^{-3/4}, and the depth of focus as 1.91θ3/21.91\theta ^{- 3/2}. Focusing by the resonant standing wave field leads to a new effect, a Rabi- like oscillation of the atom density. For the far-detuned lens, chromatic aberration is studied with the exact Fourier results. Similarly, the degradation of the focus that results from angular divergence in beams or thermal velocity distributions in traps is studied quantitatively with the exact Fourier method and understood analytically using the asymptotic results. Overall, we show that strong thin lens focusing is possible with modest laser powers and with currently achievable atomic beam characteristics.Comment: 21 pages, 11 figure

    Nanofabrication by magnetic focusing of supersonic beams

    Full text link
    We present a new method for nanoscale atom lithography. We propose the use of a supersonic atomic beam, which provides an extremely high-brightness and cold source of fast atoms. The atoms are to be focused onto a substrate using a thin magnetic film, into which apertures with widths on the order of 100 nm have been etched. Focused spot sizes near or below 10 nm, with focal lengths on the order of 10 microns, are predicted. This scheme is applicable both to precision patterning of surfaces with metastable atomic beams and to direct deposition of material.Comment: 4 pages, 3 figure

    Numerical Modeling of Evanescent-Wave Atom Optics

    Get PDF
    We numerically solve the time-dependent Schrodinger equation for a two-level atom interacting with an evanescent light field. The atom may be reflected or diffracted. Using the experimental parameter values we quantitatively model the evanescent field dopplerons (velocity-tuned resonances) observed by Stenlake et al. [Phys. Rev. A 49, 16 (1994)]. Besides successfully modeling the experiment, our approach provides complementary insights to the usual solution of the time-independent Schrodinger equation. We neglect spontaneous emission

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
    corecore