1,310 research outputs found
Two Center Light Cone Calculation of Pair Production Induced by Ultrarelativistic Heavy Ions
An exact solution of the two center time-dependent Dirac equation for pair
production induced by ultrarelativistic heavy ion collisions is presented.
Cross sections to specific final states approach those of perturbation theory.
Multiplicity rates are reduced from perturbation theory.Comment: 22 pages, latex, revtex source, one postscript figur
Coherent Vector Meson Photoproduction with Nuclear Breakup in Relativistic Heavy Ion Collisions
Relativistic heavy ions are copious sources of virtual photons. The large
photon flux gives rise to a substantial photonuclear interaction probability at
impact parameters where no hadronic interactions can occur. Multiple
photonuclear interactions in a single collision are possible. In this letter,
we use mutual Coulomb excitation of both nuclei as a tag for moderate impact
parameter collisions. We calculate the cross section for coherent vector meson
production accompanied by mutual excitation, and show that the median impact
parameter is much smaller than for untagged production. The vector meson
rapidity and transverse momentum distribution are very different from untagged
exclusive vector meson production.Comment: 14 pages, including 4 figure
Process 3 -> 3 and crossing symmetry violation
Using the Sudakov technique we sum the perturbation series for the process
and obtain the compact analytical expression for the amplitude of this
process, which takes into account all possible Coulomb interactions between
colliding particles. Compare it with the amplitude of the lepton pair
production in heavy ion collision i.e. in the process , we show that
crossing symmetry between this processes holds only if one neglects the
interaction of produced pair with ions (i.e. in the approximation
).Comment: LaTeX2e, 10 pages, 5 eps figure
A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions
We perform a gauge-transformation on the time-dependent Dirac equation
describing the evolution of an electron in a heavy-ion collision to remove the
explicit dependence on the long-range part of the interaction. We solve, in an
ultra-relativistic limit, the gauged-transformed Dirac equation using
light-front variables and a light-fronts representation, obtaining
non-perturbative results for the free pair-creation amplitudes in the collider
frame. Our result reproduces the result of second-order perturbation theory in
the small charge limit while non-perturbative effects arise for realistic
charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR
Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy
The time and field dependence of the magnetic domain structure at
magnetization reversal were investigated by Kerr microscopy in interacting
ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local
inhomogeneous magnetostatic fields favor mirroring domain structures and domain
decoration by rings of opposite magnetization. The long range nature of these
magnetostatic interactions gives rise to ultra-slow dynamics even in zero
applied field, i.e. it affects the long time domain stability. Due to this
additionnal interaction field, the magnetization reversal under short magnetic
field pulses differs markedly from the well-known slow dynamic behavior.
Namely, in high field, the magnetization of the coupled harder layer has been
observed to reverse more rapidly by domain wall motion than the softer layer
alone.Comment: 42 pages including 17 figures. submitted to JA
Solar Neutrinos and the Eclipse Effect
The solar neutrino counting rate in a real time detector like
Super--Kamiokanda, SNO, or Borexino is enhanced due to neutrino oscillations in
the Moon during a partial or total solar eclipse. The enhancement is calculated
as a function of the neutrino parameters in the case of three flavor mixing.
This enhancement, if seen, can further help to determine the neutrino
parameters.Comment: 24 Pages Revtex, 8 figures as one ps file. To appear in Phys. Rev. D;
Some typos corrected and a reference adde
Searching for the MSW Enhancement
We point out that the length scale associated with the MSW effect is the
radius of the Earth. Therefore to verify matter enhancement of neutrino
oscillations, it will be necessary to study neutrinos passing through the
Earth. For the parameters of MSW solutions to the solar neutrino problem, the
only detectable effects occur in a narrow band of energies from 5 to 10 MeV. We
propose that serious consideration be given to mounting an experiment at a
location within 9.5 degrees of the equator.Comment: 10 pages, RevTe
Searching for Dark Matter with Future Cosmic Positron Experiments
Dark matter particles annihilating in the Galactic halo can provide a flux of
positrons potentially observable in upcoming experiments, such as PAMELA and
AMS-02. We discuss the spectral features which may be associated with dark
matter annihilation in the positron spectrum and assess the prospects for
observing such features in future experiments. Although we focus on some
specific dark matter candidates, neutralinos and Kaluza-Klein states, we carry
out our study in a model independent fashion. We also revisit the positron
spectrum observed by HEAT.Comment: 19 pages, 33 figure
- …