1,712 research outputs found

    Poliovirus mutant that contains a cold-sensitive defect in viral RNA synthesis

    Get PDF
    By manipulating an infectious cDNA clone of poliovirus, we have introduced a single-codon insertion into the 3A region of the viral genome which has been proposed to encode a functional precursor of the virion-linked protein VPg. The resulting mutant was cold sensitive in monkey kidney cells. Viral RNA synthesis was poor at 32.5 degrees C, although no other function of the virus was obviously affected. The synthesis of both positive and negative strands was severely depressed. Temperature shift experiments suggest that a normal level of production of the affected function was required only during the early (exponential) phase of RNA synthesis. Analysis of viral polyprotein processing at the nonpermissive temperature revealed that some of the normal cleavages were not made, most likely as a consequence of the defect in RNA synthesis or as a result of the concomitant reduction in the level of virally encoded proteases

    In vitro transformation of lymphoid cells by Abelson murine leukemia virus

    Get PDF
    Cell cultures prepared from fetal murine liver were infected by Abelson murine leukemia virus. After about 2 weeks, proliferating cells of lymphoid morphology appeared in some of the cultures. Addition of 2-mercaptoethanol to the initial culture medium greatly enhanced the appearance of the lymphoid cells. Immunoglobulin determinants were evident on the cells in some cultures. Continuous passage of the cells in certain cultures was possible and the passaged cells could form tumors after animal inoculation. Because Abelson murine leukemia virus is able to induce in vitro malignant transformation of lymphoid cells, it probably causes leukemia by directly affecting cellular growth control

    A Computational-Experimental Approach Identifies Mutations That Enhance Surface Expression of an Oseltamivir-Resistant Influenza Neuraminidase

    Get PDF
    The His274 β†’ Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1

    Terminal deoxynucleotidyltransferase. Serological studies and radioimmunoassay

    Get PDF
    Mouse antisera against calf terminal deoxynucleotidyltransferase (terminal transferase) have been prepared. The sera have been used to characterize terminal transferase both by studying inhibition of enzyme activity and by developing a competition radioimmunoassay using highly purified 125I-labeled terminal transferase. By either assay, anti-terminal transferase serum did not cross-react significantly with calf DNA polymerases alpha and beta, Escherichia coli DNA polymerase I, or the reverse transcriptase of Moloney mouse leukemia virus. The calf terminal transferase did, however, share cross-reactive but not identical determinants with human and murine terminal transferase. The radioimmunoassay could detect as little as 2 ng of terminal transferase/mg of soluble protein in a tissue extract. Thymocytes were found to contain 280 ng of terminal transferase/mg of cell protein or about 1 X 10^(5) molecules/cell; bone marrow had about 1% of the level of enzyme found in thymus. Extracts of spleen, peripheral white blood cells, lymph nodes, liver, muscle, and kidney all lacked detectable antigenicity of terminal transferase. These data indicate that terminal transferase is a tissue-specific enzyme and is not related to other DNA polymerases

    Efficient Gene Targeting Mediated by Adeno-Associated Virus and DNA Double-Strand Breaks

    Get PDF
    Gene targeting is the in situ manipulation of the sequence of an endogenous gene by the introduction of homologous exogenous DNA. Presently, the rate of gene targeting is too low for it to be broadly used in mammalian somatic cell genetics or to cure genetic diseases. Recently, it has been demonstrated that infection with recombinant adeno-associated virus (rAAV) vectors can mediate gene targeting in somatic cells, but the mechanism is unclear. This paper explores the balance between random integration and gene targeting with rAAV. Both random integration and spontaneous gene targeting are dependent on the multiplicity of infection (MOI) of rAAV. It has previously been shown that the introduction of a DNA double-stranded break (DSB) in a target gene can stimulate gene targeting by several-thousand-fold in somatic cells. Creation of a DSB stimulates the frequency of rAAV-mediated gene targeting by over 100-fold, suggesting that the mechanism of rAAV-mediated gene targeting involves, at least in part, the repair of DSBs by homologous recombination. Absolute gene targeting frequencies reach 0.8% with a dual vector system in which one rAAV vector provides a gene targeting substrate and a second vector expresses the nuclease that creates a DSB in the target gene. The frequencies of gene targeting that we achieved with relatively low MOIs suggest that combining rAAV vectors with DSBs is a promising strategy to broaden the application of gene targeting

    NF-{kappa}B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses

    Get PDF
    Activation of mammalian innate and acquired immune responses must be tightly regulated by elaborate mechanisms to control their onset and termination. MicroRNAs have been implicated as negative regulators controlling diverse biological processes at the level of posttranscriptional repression. Expression profiling of 200 microRNAs in human monocytes revealed that several of them (miR-146a/b, miR-132, and miR-155) are endotoxin-responsive genes. Analysis of miR-146a and miR-146b gene expression unveiled a pattern of induction in response to a variety of microbial components and proinflammatory cytokines. By means of promoter analysis, miR-146a was found to be a NF-{kappa}B-dependent gene. Importantly, miR-146a/b were predicted to base-pair with sequences in the 3' UTRs of the TNF receptor-associated factor 6 and IL-1 receptor-associated kinase 1 genes, and we found that these UTRs inhibit expression of a linked reporter gene. These genes encode two key adapter molecules downstream of Toll-like and cytokine receptors. Thus, we propose a role for miR-146 in control of Toll-like receptor and cytokine signaling through a negative feedback regulation loop involving down-regulation of IL-1 receptor-associated kinase 1 and TNF receptor-associated factor 6 protein levels

    Broadly neutralizing human immunodeficiency virus type 1 antibody gene transfer protects nonhuman primates from mucosal simian-human immunodeficiency virus infection

    Get PDF
    Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of human immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy. Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its immunogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 ΞΌg/ml, although immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses are controlled

    Requirement for the NF-kappa B family member Re1A in the development of secondary lymphoid organs

    Get PDF
    The transcription factor nuclear factor (NF)-kappaB has been suggested to be a key mediator of the development of lymph nodes and Peyer's patches. However, targeted deletion of NF-kappaB/ Rel family members has not yet corroborated such a function. Here we report that when mice lacking the RelA subunit of NF-kappaB are brought to term by breeding onto a tumor necrosis factor receptor (TNFR)1-deficient background, the trice that are born lack lymph nodes, foyer's patches, and an organized splenic microarchitecture, and have a profound defect in T cell-dependent antigen responses. Analyses of TNFR1/1RelA-deficient embryonic tissues and of radiation chimeras suggest that the dependence on RelA is manifest not in hematopoietic cells but rather in radioresistant stromal cells needed for the development of secondary lymphoid organs
    • …
    corecore