79 research outputs found

    Nonmodular architectures of cognitive systems based on active inference

    Get PDF
    In psychology and neuroscience it is common to describe cognitive systems as input/output devices where perceptual and motor functions are implemented in a purely feedforward, open-loop fashion. On this view, perception and action are often seen as encapsulated modules with limited interaction between them. While embodied and enactive approaches to cognitive science have challenged the idealisation of the brain as an input/output device, we argue that even the more recent attempts to model systems using closed-loop architectures still heavily rely on a strong separation between motor and perceptual functions. Previously, we have suggested that the mainstream notion of modularity strongly resonates with the separation principle of control theory. In this work we present a minimal model of a sensorimotor loop implementing an architecture based on the separation principle. We link this to popular formulations of perception and action in the cognitive sciences, and show its limitations when, for instance, external forces are not modelled by an agent. These forces can be seen as variables that an agent cannot directly control, i.e., a perturbation from the environment or an interference caused by other agents. As an alternative approach inspired by embodied cognitive science, we then propose a nonmodular architecture based on active inference. We demonstrate the robustness of this architecture to unknown external inputs and show that the mechanism with which this is achieved in linear models is equivalent to integral control

    The modularity of action and perception revisited using control theory and active inference

    Get PDF
    The assumption that action and perception can be investigated independently is entrenched in theories, models and experimental approaches across the brain and mind sciences. In cognitive science, this has been a central point of contention between computationalist and 4Es (enactive, embodied, extended and embedded) theories of cognition, with the former embracing the “classical sandwich”, modular, architecture of the mind and the latter actively denying this separation can be made. In this work we suggest that the modular independence of action and perception strongly resonates with the separation principle of control theory and furthermore that this principle provides formal criteria within which to evaluate the implications of the modularity of action and perception. We will also see that real-time feedback with the environment, often considered necessary for the definition of 4Es ideas, is not however a sufficient condition to avoid the “classical sandwich”. Finally, we argue that an emerging framework in the cognitive and brain sciences, active inference, extends ideas derived from control theory to the study of biological systems while disposing of the separation principle, describing non-modular models of behaviour strongly aligned with 4Es theories of cognition

    [Commentary] Generative models as parsimonious descriptions of sensorimotor loops

    Get PDF
    The Bayesian brain hypothesis, predictive processing and variational free energy minimisation are typically used to describe perceptual processes based on accurate generative models of the world. However, generative models need not be veridical representations of the environment. We suggest that they can (and should) be used to describe sensorimotor relationships relevant for behaviour rather than precise accounts of the world

    Obstructive sleep apnea syndrome among obese individuals: A cross-sectional study

    Get PDF
    sem informaçãoThe obstructive sleep apnea syndrome (OSAS) is a respiratory illness, characterized by recurrent episodes of apnea and hypopnea, leading to reduction or cessation of the airflow. Obesity is one of the major risk factors for the development of OSAS. To hel6310862868sem informaçãosem informaçãosem informaçã

    Scaling active inference

    Get PDF
    In reinforcement learning (RL), agents often operate in partially observed and uncertain environments. Model-based RL suggests that this is best achieved by learning and exploiting a probabilistic model of the world. ‘Active inference’ is an emerging normative framework in cognitive and computational neuroscience that offers a unifying account of how biological agents achieve this. On this framework, inference, learning and action emerge from a single imperative to maximize the Bayesian evidence for a niched model of the world. However, implementations of this process have thus far been restricted to low-dimensional and idealized situations. Here, we present a working implementation of active inference that applies to high-dimensional tasks, with proof-of-principle results demonstrating efficient exploration and an order of magnitude increase in sample efficiency over strong model-free baselines. Our results demonstrate the feasibility of applying active inference at scale and highlight the operational homologies between active inference and current model-based approaches to RL
    corecore