9 research outputs found
Albuminuria, lung function decline, and risk of incident chronic obstructive pulmonary disease the NHLBI pooled cohorts study
Rationale: Chronic lower respiratory diseases (CLRDs), including chronic obstructive pulmonary disease (COPD) and asthma, are the fourth leading cause of death. Prior studies suggest that albuminuria, a biomarker of endothelial injury, is increased in patients with COPD. Objectives: To test whether albuminuria was associated with lung function decline and incident CLRDs. Methods: Six U.S. population–based cohorts were harmonized and pooled. Participants with prevalent clinical lung disease were excluded. Albuminuria (urine albumin-to-creatinine ratio) was measured in spot samples. Lung function was assessed by spirometry. Incident CLRD-related hospitalizations and deaths were classified via adjudication and/or administrative criteria. Mixed and proportional hazards models were used to test individual-level associations adjusted for age, height, weight, sex, race/ethnicity, education, birth year, cohort, smoking status, pack-years of smoking, renal function, hypertension, diabetes, and medications. Measurements and Main Results: Among 10,961 participants with preserved lung function, mean age at albuminuria measurement was 60 years, 51% were never-smokers, median albuminuria was 5.6 mg/g, and mean FEV 1 decline was 31.5 ml/yr. For each SD increase in log-transformed albuminuria, there was 2.81% greater FEV 1 decline (95% confidence interval [CI], 0.86–4.76%; P = 0.0047), 11.02% greater FEV 1 /FVC decline (95% CI, 4.43–17.62%; P = 0.0011), and 15% increased hazard of incident spirometry-defined moderate-to-severe COPD (95% CI, 2–31%, P = 0.0021). Each SD log-transformed albuminuria increased hazards of incident COPD-related hospitalization/mortality by 26% (95% CI, 18–34%, P, 0.0001) among 14,213 participants followed for events. Asthma events were not significantly associated. Associations persisted in participants without current smoking, diabetes, hypertension, or cardiovascular disease. Conclusions: Albuminuria was associated with greater lung function decline, incident spirometry-defined COPD, and incident COPD-related events in a U.S. population–based sample
Association of Nonobstructive Chronic Bronchitis with Respiratory Health Outcomes in Adults
Importance: Chronic bronchitis has been associated with cigarette smoking as well as with e-cigarette use among young adults, but the association of chronic bronchitis in persons without airflow obstruction or clinical asthma, described as nonobstructive chronic bronchitis, with respiratory health outcomes remains uncertain. Objective: To assess whether nonobstructive chronic bronchitis is associated with adverse respiratory health outcomes in adult ever smokers and never smokers. Design, Setting, and Participants: This prospective cohort study included 22325 adults without initial airflow obstruction (defined as the ratio of forced expiratory volume in the first second [FEV1] to forced vital capacity [FVC] of <0.70) or clinical asthma at baseline. The National Heart, Lung, and Blood Institute (NHLBI) Pooled Cohorts Study harmonized and pooled data from 9 US general population-based cohorts. Thus present study is based on data from 5 of these cohorts. Participants were enrolled from August 1971 through May 2007 and were followed up through December 2018. Exposures: Nonobstructive chronic bronchitis was defined by questionnaire at baseline as both cough and phlegm for at least 3 months for at least 2 consecutive years. Main Outcomes and Measures: Lung function was measured by prebronchodilator spirometry. Hospitalizations and deaths due to chronic lower respiratory disease and respiratory disease-related mortality were defined by events adjudication and administrative criteria. Models were stratified by smoking status and adjusted for anthropometric, sociodemographic, and smoking-related factors. The comparison group was participants without nonobstructive chronic bronchitis. Results: Among 22325 adults included in the analysis, mean (SD) age was 53.0 (16.3) years (range, 18.0-95.0 years), 58.2% were female, 65.9% were non-Hispanic white, and 49.6% were ever smokers. Among 11082 ever smokers with 99869 person-years of follow-up, participants with nonobstructive chronic bronchitis (300 [2.7%]) had accelerated decreases in FEV1 (4.1 mL/y; 95% CI, 2.1-6.1 mL/y) and FVC (4.7 mL/y; 95% CI, 2.2-7.2 mL/y), increased risks of chronic lower respiratory disease-related hospitalization or mortality (hazard ratio [HR], 2.2; 95% CI, 1.7-2.7), and greater respiratory disease-related (HR, 2.0; 95% CI, 1.1-3.8) and all-cause mortality (HR, 1.5; 95% CI, 1.3-1.8) compared with ever smokers without nonobstructive chronic bronchitis. Among 11243 never smokers with 120004 person-years of follow-up, participants with nonobstructive chronic bronchitis (151 [1.3%]) had greater rates of chronic lower respiratory disease-related hospitalization or mortality (HR, 3.1; 95% CI, 2.1-4.5) compared with never smokers without nonobstructive chronic bronchitis. Nonobstructive chronic bronchitis was not associated with FEV1:FVC decline or incident airflow obstruction. The presence of at least 1 of the component symptoms of nonobstructive chronic bronchitis (ie, chronic cough or phlegm), which was common in both ever smokers (11.0%) and never smokers (6.7%), was associated with adverse respiratory health outcomes. Conclusions and Relevance: The findings suggest that nonobstructive chronic bronchitis is associated with adverse respiratory health outcomes, particularly in ever smokers, and may be a high-risk phenotype suitable for risk stratification and targeted therapies
Lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study
Background: Former smokers now outnumber current smokers in many developed countries, and current smokers are smoking fewer cigarettes per day. Some data suggest that lung function decline normalises with smoking cessation; however, mechanistic studies suggest that lung function decline could continue. We hypothesised that former smokers and low-intensity current smokers have accelerated lung function decline compared with never-smokers, including among those without prevalent lung disease. Methods: We used data on six US population-based cohorts included in the NHLBI Pooled Cohort Study. We restricted the sample to participants with valid spirometry at two or more exams. Two cohorts recruited younger adults (≥17 years), two recruited middle-aged and older adults (≥45 years), and two recruited only elderly adults (≥65 years) with examinations done between 1983 and 2014. FEV1 decline in sustained former smokers and current smokers was compared to that of never-smokers by use of mixed models adjusted for sociodemographic and anthropometric factors. Differential FEV1 decline was also evaluated according to duration of smoking cessation and cumulative (number of pack-years) and current (number of cigarettes per day) cigarette consumption. Findings: 25 352 participants (ages 17–93 years) completed 70 228 valid spirometry exams. Over a median follow-up of 7 years (IQR 3–20), FEV1 decline at the median age (57 years) was 31·01 mL per year (95% CI 30·66–31·37) in sustained never-smokers, 34·97 mL per year (34·36–35·57) in former smokers, and 39·92 mL per year (38·92–40·92) in current smokers. With adjustment, former smokers showed an accelerated FEV1 decline of 1·82 mL per year (95% CI 1·24–2·40) compared to never-smokers, which was approximately 20% of the effect estimate for current smokers (9·21 mL per year; 95% CI 8·35–10·08). Compared to never-smokers, accelerated FEV1 decline was observed in former smokers for decades after smoking cessation and in current smokers with low cumulative cigarette consumption (<10 pack-years). With respect to current cigarette consumption, the effect estimate for FEV1 decline in current smokers consuming less than five cigarettes per day (7·65 mL per year; 95% CI 6·21–9·09) was 68% of that in current smokers consuming 30 or more cigarettes per day (11·24 mL per year; 9·86–12·62), and around five times greater than in former smokers (1·57 mL per year; 1·00–2·14). Among participants without prevalent lung disease, associations were attenuated but were consistent with the main results. Interpretation: Former smokers and low-intensity current smokers have accelerated lung function decline compared with never-smokers. These results suggest that all levels of smoking exposure are likely to be associated with lasting and progressive lung damage. Funding: National Institutes of Health, National Heart Lung and Blood Institute, and US Environmental Protection Agency
Lung function impairment and risk of incident heart failure: the NHLBI Pooled Cohorts Study
Aims: The aim is to evaluate associations of lung function impairment with risk of incident heart failure (HF). Methods and results: Data were pooled across eight US population-based cohorts that enrolled participants from 1987 to 2004. Participants with self-reported baseline cardiovascular disease were excluded. Spirometry was used to define obstructive [forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) <0.70] or restrictive (FEV1/FVC ≥0.70, FVC <80%) lung physiology. The incident HF was defined as hospitalization or death caused by HF. In a sub-set, HF events were sub-classified as HF with reduced ejection fraction (HFrEF; EF <50%) or preserved EF (HFpEF; EF ≥50%). The Fine-Gray proportional sub-distribution hazards models were adjusted for sociodemographic factors, smoking, and cardiovascular risk factors. In models of incident HF sub-types, HFrEF, HFpEF, and non-HF mortality were treated as competing risks. Among 31 677 adults, there were 3344 incident HF events over a median follow-up of 21.0 years. Of 2066 classifiable HF events, 1030 were classified as HFrEF and 1036 as HFpEF. Obstructive [adjusted hazard ratio (HR) 1.17, 95% confidence interval (CI) 1.07-1.27] and restrictive physiology (adjusted HR 1.43, 95% CI 1.27-1.62) were associated with incident HF. Obstructive and restrictive ventilatory defects were associated with HFpEF but not HFrEF. The magnitude of the association between restrictive physiology and HFpEF was similar to associations with hypertension, diabetes, and smoking. Conclusion: Lung function impairment was associated with increased risk of incident HF, and particularly incident HFpEF, independent of and to a similar extent as major known cardiovascular risk factors
Harmonization of Respiratory Data from 9 US Population-Based Cohorts
Chronic lower respiratory diseases (CLRDs) are the fourth leading cause of death in the United States. To support investigations into CLRD risk determinants and new approaches to primary prevention, we aimed to harmonize and pool respiratory data from US general population-based cohorts. Data were obtained from prospective cohorts that performed prebronchodilator spirometry and were harmonized following 2005 ATS/ERS standards. In cohorts conducting follow-up for noncardiovascular events, CLRD events were defined as hospitalizations/deaths adjudicated as CLRDrelated or assigned relevant administrative codes. Coding and variable names were applied uniformly. The pooled sample included 65,251 adults in 9 cohorts followed-up for CLRD-related mortality over 653,380 person-years during 1983-2016. Average baseline age was 52 years; 56% were female; 49% were never-smokers; and racial/ethnic composition was 44% white, 22% black, 28% Hispanic/Latino, and 5% American Indian. Over 96% had complete data on smoking, clinical CLRD diagnoses, and dyspnea. After excluding invalid spirometry examinations (13%), there were 105,696 valid examinations (median, 2 per participant). Of 29,351 participants followed for CLRD hospitalizations, median follow-up was 14 years; only 5% were lost to follow-up at 10 years. The NHLBI Pooled Cohorts Study provides a harmonization standard applied to a large, US population-based sample that may be used to advance epidemiologic research on CLRD
Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program
While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08–1.43] for PTRS versus 1.10 [0.96–1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10−16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk
Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants
Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry
Collaborative Cohort of Cohorts for COVID-19 Research (C4R) Study: Study Design
The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults comprising 14 established US prospective cohort studies. Starting as early as 1971, investigators in the C4R cohort studies have collected data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R links this pre-coronavirus disease 2019 (COVID-19) phenotyping to information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute and postacute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and reflects the racial, ethnic, socioeconomic, and geographic diversity of the United States. C4R ascertains SARS-CoV-2 infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey conducted via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations and high-quality event surveillance. Extensive prepandemic data minimize referral, survival, and recall bias. Data are harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these data will be pooled and shared widely to expedite collaboration and scientific findings. This resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including postacute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term health trajectories
Pulmonary emphysema subtypes defined by unsupervised machine learning on CT scans
Background: Treatment and preventative advances for chronic obstructive pulmonary disease (COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine learning on CT images would discover CT emphysema subtypes with distinct characteristics, prognoses and genetic associations.
Methods: New CT emphysema subtypes were identified by unsupervised machine learning on only the texture and location of emphysematous regions on CT scans from 2853 participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), a COPD case–control study, followed by data reduction. Subtypes were compared with symptoms and physiology among 2949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study and with prognosis among 6658 MESA participants. Associations with genome-wide single-nucleotide-polymorphisms were examined.
Results: The algorithm discovered six reproducible (interlearner intraclass correlation coefficient, 0.91–1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung function decline, hospitalisations, deaths, incident airflow limitation and a gene variant near DRD1, which is implicated in mucin hypersecretion (p=1.1 ×10−8). The second, the diffuse subtype was associated with lower weight, respiratory hospitalisations and deaths, and incident airflow limitation. The third was associated with age only. The fourth and fifth visually resembled combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and genetic associations. The sixth visually resembled vanishing lung syndrome.
Conclusion: Large-scale unsupervised machine learning on CT scans defined six reproducible, familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalised therapies in COPD and pre-COPD