9 research outputs found

    Control of Vertebrate Skeletal Mineralization by Polyphosphates

    Get PDF
    BACKGROUND:Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3)(-))(n)) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY:The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4)(3-)) concentration while permitting the accumulation of a high total PO(4)(3-) concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO(4)(3-) and free calcium lowers the relative apatite saturation, preventing formation of apatite crystals. Identified in situ within resorbing bone and mineralizing cartilage by the fluorescent reporter DAPI (4',6-diamidino-2-phenylindole), polyphosphate formation prevents apatite crystal precipitation while accumulating high local concentrations of total calcium and phosphate. When mineralization is required, tissue non-specific alkaline phosphatase, an enzyme associated with skeletal and cartilage mineralization, cleaves orthophosphates from polyphosphates. The hydrolytic degradation of polyphosphates in the calcium-polyphosphate complex increases orthophosphate and calcium concentrations and thereby favors apatite mineral formation. The correlation of alkaline phosphatase with this process may be explained by the destruction of polyphosphates in calcifying cartilage and areas of bone formation. CONCLUSIONS/SIGNIFICANCE:We hypothesize that polyphosphate formation and hydrolytic degradation constitute a simple mechanism for phosphate accumulation and enzymatic control of biological apatite saturation. This enzymatic control of calcified tissue mineralization may have permitted the development of a phosphate-based, mineralized endoskeleton that can be continually remodeled

    Derivation and Characterization of Bone Cells from Human Umbilical Cord Blood and Harakiri Deficient Mice

    No full text
    There is a growing need for bone cells to be used in the generation and repair of bone tissues that have become destroyed as a result of disease (e.g. osteoporosis), injuries and genetic deficiencies. Human umbilical cord blood has been a source of cells that is being investigated for its ability to generate cells for repair of various tissues including bone, which is the focus of this investigation. Similarly cord blood can also be used as a source of progenitors for osteoclasts that might be used for management of other diseases of bone characterized by defects in these cells (e.g. osteopetrosis). Moreover, there are few reliable in vitro models for human osteoclasts and so the ability to develop a cell model for human osteoclasts will also permit more meaningful studies on regulation of these cells than possible in the past. One of the setbacks suffered by researchers in designing therapeutic uses for stem cells is that in laboratory animals tumours can arise from these transplanted and pleuripotential cells. This suggests that stem cells might also have a dysregulated apoptosis pathway, which is critically important to understand before the safe use of stem cells can be assured. In order to increase our understanding of apoptosis in bone cells in particular, studies were done to try to understand the role of harakiri, a pro-apoptotic gene, in the development of osteoblasts and osteoclasts. Therefore, this series of study had two main foci; the development of human bone cells, particularly osteoclasts and osteoblasts, from human umbilical cord blood, and to understand further the mechanisms regulating apoptosis in bone cells. This study showed that osteoblasts could not be derived easily from human cord blood cells while it was possible to generate fully functional osteoclasts, which demonstrated unique properties. Studies done on harakiri deficient mice showed that absence of this gene caused an increase in osteoblast formation and a decrease in osteoclast formation. These findings can be exploited when considering the development of pharmacological agents that might be used in the future to modulate osteoclast cell development, function, and apoptosis.Ph

    Derivation and Characterization of Bone Cells from Human Umbilical Cord Blood and Harakiri Deficient Mice

    No full text
    There is a growing need for bone cells to be used in the generation and repair of bone tissues that have become destroyed as a result of disease (e.g. osteoporosis), injuries and genetic deficiencies. Human umbilical cord blood has been a source of cells that is being investigated for its ability to generate cells for repair of various tissues including bone, which is the focus of this investigation. Similarly cord blood can also be used as a source of progenitors for osteoclasts that might be used for management of other diseases of bone characterized by defects in these cells (e.g. osteopetrosis). Moreover, there are few reliable in vitro models for human osteoclasts and so the ability to develop a cell model for human osteoclasts will also permit more meaningful studies on regulation of these cells than possible in the past. One of the setbacks suffered by researchers in designing therapeutic uses for stem cells is that in laboratory animals tumours can arise from these transplanted and pleuripotential cells. This suggests that stem cells might also have a dysregulated apoptosis pathway, which is critically important to understand before the safe use of stem cells can be assured. In order to increase our understanding of apoptosis in bone cells in particular, studies were done to try to understand the role of harakiri, a pro-apoptotic gene, in the development of osteoblasts and osteoclasts. Therefore, this series of study had two main foci; the development of human bone cells, particularly osteoclasts and osteoblasts, from human umbilical cord blood, and to understand further the mechanisms regulating apoptosis in bone cells. This study showed that osteoblasts could not be derived easily from human cord blood cells while it was possible to generate fully functional osteoclasts, which demonstrated unique properties. Studies done on harakiri deficient mice showed that absence of this gene caused an increase in osteoblast formation and a decrease in osteoclast formation. These findings can be exploited when considering the development of pharmacological agents that might be used in the future to modulate osteoclast cell development, function, and apoptosis.Ph

    Direct effects of metabolic products and sonicated extracts of Porphyromonas gingivalis 2561 on osteogenesis in vitro.

    No full text
    It is well documented that oral microorganisms play a significant role in the initiation and progression of periodontal disease. By using various in vitro models, it has been shown that some bacteria considered periodontal pathogens or their products can stimulate bone resorption and some other parameters of osteoblast-like cell activity. However, the effects of these organisms and their products on osteogenesis itself are not known. This study was undertaken to determine the direct effects of metabolic products and sonicated extracts of Porphyromonas gingivalis on bone formation in the chick periosteal osteogenesis model. Cultures of P. gingivalis 2561 were grown under standard anaerobic culture conditions. The spent medium was collected, and following centrifugation, sonicated bacterial extracts were prepared from the bacterial pellet. These were added in various proportions to the chick periosteal osteogenesis cultures. Sonicated extracts were further fractionated into five molecular-size ranges and similarly tested. Parameters of osteogenesis, including alkaline phosphatase activity, calcium and Pi accumulation, and collagen synthesis, were measured on 6-day-old cultures. Compared with controls devoid of bacterial products, osteogenesis was inhibited significantly in cultures treated with either conditioned medium or extracts obtained from P. gingivalis. Various amounts of inhibitory activity were observed in the different ultrafiltration molecular-size fractions, with very profound inhibitory effects observed in the < 5-kDa range. Histological observations indicated the presence of cells, some bone, and/or new fibrous connective tissue at all concentrations, indicating that toxicity was not a factor. These results suggest that periodontal pathogens such as P. gingivalis might contribute to the bone loss in periodontal diseases not only by stimulating resorption but, possibly, by inhibiting bone formation directly

    An in vitro model of radiation-induced craniofacial bone growth inhibition

    No full text
    Radiation-induced craniofacial bone growth inhibition is a consequence of therapeutic radiation in the survivors of pediatric head and neck cancer. Previously, the infant rabbit orbitozygomatic complex (OZC) was established as a reliable animal model. The purpose of this study was to develop a cell culture model from the rabbit OZC to study the effects of radiation in the craniofacial skeleton. Infant (7-week-old) New Zealand white rabbits were used in this study. Periostea from both OZC were harvested in sterile conditions, introduced into cell culture by way of sequential digestion, and subcultured at confluence. Cultures were analyzed for cellular proliferation (methylthiazoletetrazolium assay), alkaline phosphatase activity, collagen type I expression, and mineralization. Electron microscopy was performed to reveal the in vitro ultrastructure. Subsequently, rabbits were irradiated with sham or 15 Gy radiation, and cell cultures were developed and analyzed for cell numbers. Cell cultures, grown from OZC periostea, expressed osteoblast-like phenotype, with high alkaline phosphatase activity, collagen type 1 expression, and mineralization in an osteogenic environment. Electron microscopy confirmed the characteristic ultrastructural features of osteogenesis in vitro. Finally, significantly (P < 0.01) fewer cells were obtained from animals treated with 15 Gy radiation compared with those from control animals.A primary cell culture with osteoblast-like cellular phenotype was developed from infant rabbit OZC periosteum. This cell culture system responded to in vivo administered radiation by a significant decrease in cell numbers. This in vitro model will be subsequently used to study the cellular mechanisms of radiation and radioprotection in craniofacial osteoblast-like cells

    Radiation-induced craniofacial bone growth inhibition: in vitro cytoprotection in the rabbit orbitozygomatic complex periosteum-derived cell culture

    No full text
    BACKGROUND: Radiotherapy for the management of head and neck cancer in pediatric patients results in severe inhibition of craniofacial bone growth. Previously, the infant rabbit orbitozygomatic complex was established as an experimental model. Amifostine, a cytoprotective agent, was found effective in preventing radiation-induced bone growth inhibition. This study was designed to investigate the effects radiation on osteogenic cells from infant rabbit orbitozygomatic complex periostea and to assess the effects of cytoprotection in vitro. METHODS: Infant New Zealand White rabbits (n = 18) were randomized into three groups and received radiation (0, 10, or 15 Gy) to both orbitozygomatic complexes. Cell cultures were developed from orbitozygomatic complex periostea, and cell numbers, proliferation, alkaline phosphatase, and collagen type I expression and mineralization were assessed. Subsequently, rabbits (n = 18) were randomized into three groups to receive either radiation at the effective dose, pretreatment with amifostine (300 mg/kg, intravenously, 20 minutes before irradiation) with the effective radiation dose, or no treatment. Cell cultures were developed and tested for proliferation and alkaline phosphatase expression. RESULTS: Irradiation resulted in a significant inhibition of cell numbers (p < 0.001) and proliferation (p < 0.01) at the 15-Gy dose and no statistically significant changes in alkaline phosphatase activity. Collagen type I expression and mineralization were also significantly reduced at the 15-Gy dose. Pretreatment with amifostine significantly (p < 0.05) enhanced the number of surviving cells. CONCLUSIONS: Amifostine is capable of protecting orbitozygomatic complex periosteum-derived osteogenic cells from the deleterious effects of radiation. This study provides the basis for understanding the cellular mechanisms of radiation-induced craniofacial bone growth inhibition and cytoprotection by amifostine

    Next-generation RNA sequencing of archival formalin-fixed paraffin-embedded urothelial bladder cancer

    Full text link
    Molecular profiling of individual cancers is key to personalised medicine. While sequencing technologies have required stringent sample collection and handling, recent technical advances offer sequencing from tissues collected in routine practice and tissues already stored in archives. In this paper, we establish methods for whole-transcriptome RNA sequencing (RNA-seq) from formalin-fixed paraffin-embedded tissues. We obtain average RNA-seq reads of >100 million per sample using the Illumina HiSeq2000 platform. We find high concordance with results from matching fresh frozen samples (>0.8 Spearman correlation). For validation, we compared low- and high-grade bladder cancer transcriptomes in 49 tumour samples after transurethral resection of bladder tumour. We found 947 differentially expressed protein-coding genes. While high-grade lesions exhibited distinct intertumour transcriptome heterogeneity, the transcriptome of low-grade tumours was homogeneous. PATIENT SUMMARY: In this report, we show that it is now possible to use universally available bladder cancer samples that have been fixed in formalin to perform high-quality transcriptome analysis. This ability will facilitate the development of transcriptome-wide tests based on gene expression correlated with clinical outcome
    corecore