29 research outputs found

    Moving boundary and photoelastic coupling in GaAs optomechanical resonators

    Get PDF
    Chip-based cavity optomechanical systems are being considered for applications in sensing, metrology, and quantum information science. Critical to their development is an understanding of how the optical and mechanical modes interact, quantified by the coupling rate g0g_{0}. Here, we develop GaAs optomechanical resonators and investigate the moving dielectric boundary and photoelastic contributions to g0g_{0}. First, we consider coupling between the fundamental radial breathing mechanical mode and a 1550 nm band optical whispering gallery mode in microdisks. For decreasing disk radius from R=5R=5 μ\mum to R=1R=1 μ\mum, simulations and measurements show that g0g_{0} changes from being dominated by the moving boundary contribution to having an equal photoelastic contribution. Next, we design and demonstrate nanobeam optomechanical crystals in which a 2.52.5 GHz mechanical breathing mode couples to a 1550 nm optical mode predominantly through the photoelastic effect. We show a significant (30 %\%) dependence of g0g_{0} on the device's in-plane orientation, resulting from the difference in GaAs photoelastic coefficients along different crystalline axes, with fabricated devices exhibiting g0/2πg_{\text{0}}/2\pi as high as 1.1 MHz for orientation along the [110] axis. GaAs nanobeam optomechanical crystals are a promising system which can combine the demonstrated large optomechanical coupling strength with additional functionality, such as piezoelectric actuation and incorporation of optical gain media

    Resonant, High-Frequency Acousto-Optic Modulators (AOM) Fabricated in a MEMS Foundry Platform

    Get PDF

    Quantifying and mitigating optical surface loss in suspended GaAs photonic integrated circuits

    Full text link
    Understanding and mitigating optical loss is critical to the development of high-performance photonic integrated circuits (PICs). Especially in high refractive index contrast compound semiconductor (III-V) PICs, surface absorption and scattering can be a significant loss mechanism, and needs to be suppressed. Here, we quantify the optical propagation loss due to surface state absorption in a suspended GaAs photonic integrated circuits (PIC) platform, probe its origins using X-ray photoemission spectroscopy (XPS) and spectroscopic ellipsometry (SE), and show that it can be mitigated by surface passivation using alumina (Al2O3Al_{2}O_{3}). We also explore potential routes towards achieving passive device performance comparable to state-of-the-art silicon PICsComment: 8 pages, 8 figures, Comments welcome !!! v2: fixed typo in equation 1, minor edits in tex

    Tuning and Stabilization of Optomechanical Crystal Cavities Through NEMS Integration

    Get PDF
    Nanobeam optomechanical crystals, in which localized GHz frequency mechanical modes are coupled to wavelength-scale optical modes, are being employed in a variety of experiments across different material platforms. Here, we demonstrate the electrostatic tuning and stabilization of such devices, by integrating a Si3_3N4_4 slot-mode optomechanical crystal cavity with a nanoelectromechanical systems (NEMS) element, which controls the displacement of an additional "tuning" beam within the optical near-field of the optomechanical cavity. Under DC operation, tuning of the optical cavity wavelength across several optical linewidths with little degradation of the optical quality factor (Q≈105Q\approx10^5) is observed. The AC response of the tuning mechanism is measured, revealing actuator resonance frequencies in the 10 MHz to 20 MHz range, consistent with the predictions from simulations. Feedback control of the optical mode resonance frequency is demonstrated, and alternative actuator geometries are presented

    Acousto-optic and opto-acoustic modulation in piezo-optomechanical circuits

    Get PDF
    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic modulation, in which the application of optical pulses gates the transmission of propagating acoustic waves. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modeled through the coupled mode equations of cavity optomechanics.Comment: 8 pages, 6 figure

    Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Full text link
    The interaction of optical and mechanical modes in nanoscale optomechanical systems has been widely studied for applications ranging from sensing to quantum information science. Here, we develop a platform for cavity optomechanical circuits in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency field through the piezo-electric effect, or optically through the strong photoelastic effect. We use this to demonstrate a novel acoustic wave interference effect, analogous to coherent population trapping in atomic systems, in which the coherent mechanical motion induced by the electrical drive can be completely cancelled out by the optically-driven motion. The ability to manipulate cavity optomechanical systems with equal facility through either photonic or phononic channels enables new device and system architectures for signal transduction between the optical, electrical, and mechanical domains

    High frequency guided mode resonances in mass-loaded, thin film gallium nitride surface acoustic wave devices

    Get PDF
    We demonstrate high-frequency (> 3 GHz), high quality factor radio frequency (RF) resonators in unreleased thin film gallium nitride (GaN) on sapphire and silicon carbide substrates by exploiting acoustic guided mode (Lamb wave) resonances. The associated energy trapping, due to mass loading from the gold electrodes, allows us to efficiently excite these resonances from a 50 Ω\Omega input. The higher phase velocity, combined with lower electrode damping, enables high quality factors with moderate electrode pitch, and provides a viable route towards high-frequency piezoelectric devices. The GaN platform, with its ability to guide and localize high-frequency sound on the surface of a chip with access to high-performance active devices, will serve as a key building block for monolithically integrated RF front-ends.Comment: 5 pages, Submitted for revie

    Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    Get PDF
    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ±\pm 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources.Comment: 9 pages, 3 figure
    corecore