1,780 research outputs found

    Positivity and lower bounds for the density of Wiener functionals

    Get PDF
    We consider a functional on the Wiener space which is smooth and not degenerated in Malliavin sense and we give a criterion of strict positivity of the density. We also give lower bounds for the density. These results are based on the representation of the density by means of the Riesz transform introduced by Malliavin and Thalmaier and on the estimates of the Riesz transform given Bally and Caramellino

    Regularity of Wiener functionals under a H\"ormander type condition of order one

    Full text link
    We study the local existence and regularity of the density of the law of a functional on the Wiener space which satisfies a criterion that generalizes the H\"ormander condition of order one (that is, involving the first order Lie brackets) for diffusion processes

    Non elliptic SPDEs and ambit fields: existence of densities

    Full text link
    Relying on the method developed in [debusscheromito2014], we prove the existence of a density for two different examples of random fields indexed by (t,x)\in(0,T]\times \Rd. The first example consists of SPDEs with Lipschitz continuous coefficients driven by a Gaussian noise white in time and with a stationary spatial covariance, in the setting of [dalang1999]. The density exists on the set where the nonlinearity σ\sigma of the noise does not vanish. This complements the results in [sanzsuess2015] where σ\sigma is assumed to be bounded away from zero. The second example is an ambit field with a stochastic integral term having as integrator a L\'evy basis of pure-jump, stable-like type.Comment: 23 page

    Toward Integration of mHealth in Primary Care in the Netherlands: A Qualitative Analysis of Stakeholder Perspectives

    Get PDF
    Background: There is a growing need to structurally change the way chronic illness care is organized as health systems struggle to meet the demand for chronic care. mHealth technologies can alter traditional approaches to health care provision by stimulating self-management of chronically ill patients. The aim of this study was to understand the complex environment related to the introduction of mHealth solutions into primary care for chronic disease management while considering health system functioning and stakeholder views. Methods: A transdisciplinary approach was used informed by the Interactive Learning and Action (ILA) methodology. Exploratory interviews (n = 5) were held with representatives of stakeholder groups to identify and position key stakeholders. Subsequently, professionals and chronically ill patients were consulted separately to elaborate on the barriers and facilitators in integration, using semi-structured interviews (n = 17) and a focus group (n = 6). Follow-up interviews (n = 5) were conducted to discuss initial findings of the stakeholder analysis. Results: Most stakeholders, in particular primary care practitioners and patients, seem to have a supporting or mixed attitude toward integration of mHealth. On the other hand, several powerful stakeholders, including primary care information system developers and medical specialists are likely to show resistance or a lack of initiative toward mHealth integration. Main barriers to mHealth integration were a lack of interoperability with existing information systems; difficulties in financing mHealth implementation; and limited readiness in general practices to change. Potential enablers of integration included co-design of mHealth solutions and incentives for pioneers. Conclusion: Stakeholders acknowledge the benefits of integrating mHealth in primary care. However, important barriers perceived by end-users prevent them to fully adopt and use mHealth. This study shows that the complexity of introducing mHealth into primary care calls for strategies encouraging collaboration between multiple stakeholders to enhance successful implementation

    Entrainment Mechanisms for Outflows in the L1551 Star-Forming Region

    Get PDF
    We present high sensitivity 12CO and 13CO J=1!0 molecular line maps covering the full extent of the parsec scale L1551 molecular outflow, including the redshifted east-west (EW) flow. We also present 12CO J=3!2 data that extends over a good fraction of the area mapped in the J=1!0 transition. We compare the molecular data to widefield, narrow-band optical emission in H. While there are multiple outflows in the L1551 cloud, the main outflow is oriented at 50◦ position angle and appears to be driven by embedded source(s) in the central IRS 5 region. The blueshifted outflowing molecular gas extends to the edge of the molecular cloud and beyond the last HH object, HH 256. On the contrary, the redshifted molecular gas terminates within the cloud, short of the most distant HH object, HH 286, which lies well beyond the cloud boundary. The J=3!2 data indicate that there may be molecular emission associated with the L1551 NE jet, within the redshifted lobe of main outflow. We have also better defined the previously known EW flow and believe we have identified its blueshifted counterpart. We further speculate that the origin of the EW outflow lies near HH 102. We use velocity dependent opacity correction to estimate the mass and the energy of the outflow. The resulting mass spectral indices from our analysis, are systematically lower (less steep) than the power law indices obtained towards other outflows in several recent studies that use a similar opacity correction method. We show that systematic errors and biases in the analysis procedures for deriving mass spectra could result in errors in the determination of the power-law indices. The mass spectral indices, the morphological appearance of the position-velocity plots and integrated intensity emission maps of the molecular data, compared with the optical, suggest that jet-driven bow-shock entrainment is the best explanation for the driving mechanism of outflows in L1551. The kinetic energy of the outflows is found to be comparable to the binding energy of the cloud and sufficient to maintain the turbulence in the L1551 cloud
    corecore