Positivity and lower bounds for the density of Wiener functionals

Vlad Bally, Lucia Caramellino

To cite this version:

Vlad Bally, Lucia Caramellino. Positivity and lower bounds for the density of Wiener functionals. Potential Analysis, Springer Verlag, 2013, 39 (2), pp.141-168. <10.1007/s11118-012-93247>. <hal-00936148>

HAL Id: hal-00936148

https://hal.archives-ouvertes.fr/hal-00936148
Submitted on 4 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Positivity and lower bounds for the density of Wiener functionals

Vlad Bally*
Lucia Caramellino ${ }^{\dagger}$

May 5, 2012

Abstract

We consider a functional on the Wiener space which is smooth and not degenerated in Malliavin sense and we give a criterion for the strict positivity of the density, that we can use to state lower bounds as well. The results are based on the representation of the densify in terms of the Riesz transform introduced in Malliavin and Thalmaier ib: 1 Bally and Caramellino bib:

Keywords: Riesz transform, Malliavin calculus, strict positivity and lower bounds for the density.
2000 MSC: $60 \mathrm{H} 07,60 \mathrm{H} 30$.

1 Introduction

The aim of this paper is to study the strict positivity and lower bounds for the density of a functional on the Wiener space. Although the two problems are related each other, the hypothesis under which the results may be obtained are different. Just to make clear what we expect to be these hypothesis, consider the example of a d dimensional diffusion process X_{t} solution of $d X_{t}=\sum_{j=1}^{m} \sigma_{j}\left(X_{t}\right) \circ d W_{t}^{j}+b\left(X_{t}\right) d t$ where $\circ d W_{t}^{j}$ denotes the Stratonovich integral. The skeleton associated to this diffusion process is the solution $x_{t}(\phi)$ of the equation $d x_{t}(\phi)=\sum_{j=1}^{m} \sigma_{j}\left(x_{t}(\phi)\right) \phi_{t}^{j} d t+$ $b\left(x_{t}(\phi)\right) d t$, for a square integrable ϕ. The celebrated support theorem of Stroock and Varadhan guarantees that the support of the law of X_{t} is the closure of the set of points x which are attainable by a skeleton, that is $x=x_{t}(\phi)$ for some control $\phi \in L^{2}([0, T])$. Suppose now that the law of X_{t} has a continuous density $p_{X_{t}}$ with

[^0]respect to the Lebesgue measure. Then in order to get a criterion for $p_{X_{t}}(x)>0$, we prove that this holds if x is attainable, that is $x=x_{t}(\phi)$ for some ϕ, and a suitable non degeneracy assumption holds in x. The second problem is to give a lower bound for $p_{X_{t}}(x)$ and this can be achieved if a non degeneracy condition holds all along the curve $x(\phi)$ which arrives in x at time t. Roughly speaking, the idea is the following. If one has a non degeneracy condition all along the skeleton curve arriving in x at time t, one may give a lower bound for the probability to remain in the tube up to $t-\delta$ for a small $\delta>0$ and then one employs an argument based on Malliavin calculus in order to focus on the point x - essentially this means that one is able to give a precise estimate of the behavior of the diffusion in short time (between $t-\delta$ and t). This allows one to obtain a lower bound for $p_{X_{t}}(x)$. If one is not interested in lower bounds but only in the strict positivity property, the argument is the same but one does not need to estimate the probability to remain in the tube: using the support theorem one knows that this probability is strictly positive (but this is just qualitative, so one has no lower bound for it) and then one focuses on the point x using again the same argument concerning the behavior of the diffusion in short time. So one needs the non degeneracy condition in x only.

The two problems mentioned above have been intensively studied in the literature. Let us begin with the strict positivity. At the best of our knowledge the first probabilistic approach to this problem is due to Ben-Arous and Leandre [8], who used Malliavin calculus in order to give necessary and sufficient conditions allowing one to have $p_{X_{t}}(x)>0$ for a diffusion process (as above). They proved that if Hörmander's condition holds then $p_{X_{t}}(x)>0$ if and only if x is attainable by a skeleton $x_{t}(\phi)$ such that $\psi \mapsto x_{t}(\psi)$ is a submersion in ϕ. The argument they used is based on the inverse function theorem and on a Girsanov transformation. All the papers which followed developed in some way their techniques. First, Aida, Kusuoka and Stroock 1] gave a generalization of this criterion in an abstract framework which still permits to exhibit a notion of skeleton. Then Hirsch and Song $\mid 11]$ Studied a variant of such a criterion for ${ }^{a}$ general functional on the Wiener space using capacities and finally Leandre $\frac{11}{14]}$ obtained similar results for diffusion processes on manifolds. Notice that once one has a criterion of the above type there is still a non trivial problem to be solved: one has to exhibit the skeleton which verifies the submersion property. So, number of authors dealt with concrete examples in which they are able to use in a more or Pardoux $\frac{10}{}$ bib: dealt with parabolic stochastic heat equations, Millet and Sanz-Solé
 considered jump type equations, Dalang and D. Nualart q9] used such positivity results for building a potential theory for SPDE's and E. Nualart [20] has recently proved results in this direction again for solutions of SPDE's.
Concerning lower bounds for the density, a first result was found by Kusuoka and Stroock [13] for diffusion processes . that verify a strong uniform Hörmander condition. Afterwards Kohatsu-Higa [12] obtained lower bounds for general functionals on the Wiener space under a uniform ellipticity condition and Bally $\left\lvert\, \begin{aligned} & {[16]: b a l i y} \\ & 2]\end{aligned}\right.$
under local ellipticity conditions. Recently, Gaussiay type lower and upper bounds are studied in E. Nualart and Quer-Sardanyons $[21\}$ for the nonlinear stochastic heat equation.
The present paper gives a contribution in this framework: we study the strict positivity and lower bounds for the density of a general functional on the Wiener space starting from a result (Proposition exp-est 3.) which gives the behavior of a small perturbation of a Gaussian random variable - it corresponds to the study of a diffusion process in short time ${ }_{\text {thist }}$ (between $t-\delta$ and t). This is a consequence of an abstract result (Theorem 2.4) in which the distance between the local density functions of two random variables (doesn't matter if one of them is Gaussian) is studied. It is worth to stress that Theorem 2.4 is of interest in itself and can be linked to the implicit function theorem in order to get further estimates which can be used to handle the same problem under Hörmander type conditions (see $\frac{\text { pib }}{4 \mathrm{~b} \text {). } \text {. }}$
So, our main result (see Theorem 3.3) gives sufficient conditions in order to obtain the following lower bound for the law of F around a point $y \in \mathbb{R}^{d}$: there exists $\eta>0$ and $c(y)>0$ such that

$$
\mathbb{P}(F \in A) \geq c(y) \operatorname{Leb}_{d}(A) \quad \text { for every Borel set } A \subset B_{\eta}(y)
$$

Leb_{d} denoting the Lebesgue measure on \mathbb{R}^{d}. In particular, if the law of F is absolutely continuous on $B_{\eta}(y)$ then the density p_{F} satisfies $p_{F}(x) \geq c(y)>0$ for every $x \in B_{\eta}(y)$. Essentially, our conditions are that y belongs to the support of the law of F and an ellipticity-type condition holds around y.
In our examples, we first deal with an Ito process X_{t} defined as a component of a diffusion process, that is

$$
\begin{aligned}
X_{t} & =x_{0}+\sum_{j=1}^{m} \int_{0}^{t} \sigma_{j}\left(X_{t}, Y_{t}\right) d W_{t}^{j}+\int_{0}^{t} b\left(X_{t}, Y_{t}\right) d t \\
Y_{t} & =y_{0}+\sum_{j=1}^{m} \int_{0}^{t} \alpha_{j}\left(X_{t}, Y_{t}\right) d W_{t}^{j}+\int_{0}^{t} \beta\left(X_{t}, Y_{t}\right) d t
\end{aligned}
$$

Notice that for diffusion processes, we getan example which is essentially the same
 $(x(\phi), y(\phi))$ denote the skeleton associated to the diffusion pair (X, Y) and let $x=$ $x_{t}(\phi)$ for some suitable control ϕ. Then, whenever a continuous local density $p_{X_{t}}$ of X_{t} exists in x, we prove that if $\sigma \sigma^{*}\left(x, y_{t}(\phi)\right)>0$ then $p_{X_{t}}(x)>0$. And moreover, if $\inf _{s \leq t} \inf _{y} \sigma \sigma_{\text {th-ito }}^{*}\left(x_{s}(\phi), y\right) \geq \lambda_{*}>0$ and $x_{s}(\phi)$ belongs to a suitable class of paths (see Theorem 4.1 for details), then a lower bound for $p_{X_{t}}(x)$ can be written in terms of the lower estimates for the probability that Ito processes remain near a path proved in Bally, Fernández and Meda in bғm
As a second example, in Section $\frac{a y y}{4.2 \text { we }}$ treat the two dimensional diffusion process

$$
d X_{t}^{1}=\sigma_{1}\left(X_{t}\right) d W_{t}+b_{1}\left(X_{t}\right) d t, \quad d X_{t}^{2}=b_{2}\left(X_{t}\right) d t
$$

which is degenerated in any point $x \in \mathbb{R}^{2}$. We assume that x is attainable by a skeleton $x_{t}(\phi)$ and that $\left|\sigma_{1}(x)\right|>0$ and $\left|\partial_{1} b_{2}(x)\right|>0$ - which amounts to say that the weak Hörmander condition holds in the point x. We prove that under this hypothesis one has $p_{X_{t}}(x)>0$. For this example Bally and Kohatsu-Higa [p] have already given a lower bound for the density under the stronger hypothesis that $\inf _{s \leq t}\left|\sigma\left(x_{s}(\phi)\right)\right|>0$ and $\inf _{s \leq t}\left|\partial_{1} b_{2}\left(x_{s}(\phi)\right)\right|>0$. So the same non degeneracy condition holds but along the whole curve $x_{s}(\phi), 0 \leq s \leq t$. Notice that we use a skeleton $x_{s}(\phi)$ which arrives in x but we do not ask for the immersion property (according the result of Ben-Arous and Leandre it follows that a skeleton which verifies the immersion property exists also, but we do not know how to produce it directly and we do not need it). And it seems clear to us that our criterion may be used for SPDE's as well and would simplify the proofs given in the already mentioned papers.
The paper is organized as follows. In Section $\frac{\text { sect-resume }}{2 \mathrm{we}} \mathrm{frst}$ state localized representation formulas for the density by means of the Riesz transform (see Section $\frac{\text { sect-10cIBP }}{2.1 \text {) and then }}$ we study the distance between the local densities of two random variables (see Section (2.2). Section 3 is devotedtiontee results on the perturbation of a Gaussian random variable (see Section 3.1) and to the study of the strict positivity and the lower bounds for the density of a general functional on the Wiener space (see Section Sect-positivity

2 Localized integration by parts formulas

We consider a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ with an infinite dimensional Brownian motion $W=\left(W^{n}\right)_{n \in \mathbb{N}}$ and we use the Malliavin calculys in order to obtain integration by parts formulas. We refer to D. Nualart $[19]$ for notation and basic results. We denote by $\mathbb{D}^{k, p}$ the space of the random variables which are k times differentiable in Malliavin sense in L^{p} and for a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}^{m}$ we denote by $D^{\alpha} F$ the Malliavin derivative of F corresponding to the multi-index α. So, $\mathbb{D}^{m, p}$ is the closure of the space of the simple functionals with respect to the Malliavin Sobolev norm

$$
\|F\|_{m, p}^{p}=\|F\|_{p}^{p}+\sum_{k=1}^{m} \mathbb{E}\left(\left|D^{(k)} F\right|^{p}\right)
$$

where

$$
\left|D^{(k)} F\right|^{2}=\sum_{|\alpha|=k} \int_{[0, \infty)^{k}}\left|D_{s_{1}, \ldots, s_{k}}^{\alpha} F\right|^{2} d s_{1}, \ldots d s_{k}
$$

In the special case $k=1$, we consider the notation

$$
|D F|^{2}:=\left|D^{(1)} F\right|^{2}=\sum_{\ell=0}^{\infty} \int_{[0, \infty)}\left|D_{s}^{\ell} F\right|^{2} d s
$$

(for the sake of clearness, we recall that D^{ℓ} stands for the Malliavin derivative w.r.t. W^{ℓ} - and not the derivative of order ℓ). Moreover, for $F=\left(F^{1}, \ldots, F^{d}\right), F^{i} \in \mathbb{D}^{1,2}$,
we let σ_{F} denote the Malliavin covariance matrix associated to F :

$$
\sigma_{F}^{i, j}=\left\langle D F^{i}, D F^{j}\right\rangle=\sum_{k=1}^{\infty} \int_{0}^{\infty} D_{s}^{k} F^{i} D_{s}^{k} F^{j} d s, \quad i, j=1, \ldots, d .
$$

If σ_{F} is invertible, we denote through $\widehat{\sigma}_{F}$ the inverse matrix. Finally, as usual, the notation L will be used for the OrnsteinUhlenbeck operator.

2.1 Localized representation formulas for the density

Consider now an integrable random variable U taking values on $[0,1]$ and set

$$
d \mathbb{P}_{U}=U d \mathbb{P}
$$

\mathbb{P}_{U} is a non negative measure (but generally not a probability measure) and we set \mathbb{E}_{U} the expectation (integral) w.r.t. \mathbb{P}_{U}. For $F \in \mathbb{D}^{k, p}$, we define

$$
\|F\|_{p, U}^{p}=\mathbb{E}_{U}\left(|F|^{p}\right) \quad \text { and } \quad\|F\|_{k, p, U}^{p}=\|F\|_{p, U}^{p}+\sum_{i=1}^{k} \mathbb{E}_{U}\left(\left|D^{(i)} F\right|^{p}\right) .
$$

We assume that $U \in \mathbb{D}^{1, \infty}$ and we consider the following condition:

$$
\begin{equation*}
m_{U}(p):=1+\mathbb{E}_{U}\left(|D \ln U|^{p}\right)<\infty, \quad \text { for every } p \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

Mall1
(2.1) could seem problematic because U may vanish and then $D(\ln U)$ is not well defined. Nevertheless we make the convention that $D(\ln U)=\frac{1}{U} D U \mathbf{1}_{\{U \neq 0\}}$ (in fact this is the quantity we are really concerned in). Since $U>0 \mathbb{P}_{U}$-a.s. and $D U$ is well defined, the relation $\|\ln U\|_{1, p, U}<\infty$ makes sense.
We give now the integration by parts formula with respect to \mathbb{P}_{U} (that is, locally) and we study some consequences concerning the regularity of the the results in Bally and Caramellino [3] (see also Shigekawa $[22]$ or Malliavin 115$]$). In particular, for $F \in\left(\mathbb{D}^{1, \infty}\right)^{d}$, we will need that the Malliavin covariance matrix σ_{F} is invertible a.s. under \mathbb{P}_{U}, so we call again $\widehat{\sigma}_{F}$ the inverse of σ_{F} on the set $\{U \neq 0\}$. Let Q_{d} denote the Poisson kernel on $\mathbb{R}^{d}: Q_{d}$ is the fundamental solution of the equation $\Delta Q_{d}=\delta_{0}$ in \mathbb{R}^{d} (δ_{0} denoting the Dirac mass at the origin) and is given by

$$
\begin{equation*}
Q_{1}(x)=\max (x, 0), \quad Q_{2}(x)=\mathcal{A}_{2}^{-1} \ln |x| \quad \text { and } \quad Q_{d}(x)=-\mathcal{A}_{d}^{-1}|x|^{2-d}, d>2, \tag{2.2}
\end{equation*}
$$

where for $d \geq 2, \mathcal{A}_{d}$ is the area of the unit sphere in \mathbb{R}^{d}. Then one has
1 Lemma 2.1. Assume that ((2.1) holds. Let $F=\left(F_{1}, \ldots, F_{d}\right)$ be such that $F_{i} \in \mathbb{D}^{2, \infty}$, $i=1, \ldots, d$. Assume that $\operatorname{det} \sigma_{F}>0$ on the set $\{U \neq 0\}$ and moreover

$$
\begin{equation*}
\mathbb{E}_{U}\left(\left(\operatorname{det} \sigma_{F}\right)^{-p}\right)<\infty \quad \forall p \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Law1
Let $\widehat{\sigma}_{F}$ be the inverse of σ_{F} on the set $\{U \neq 0\}$. Then the following statements hold.
A. For every $f \in C_{b}^{\infty}\left(R^{d}\right)$ and $V \in \mathbb{D}^{1, \infty}$ one has
$\mathbb{E}_{U}\left(\partial_{i} f(F) V\right)=\mathbb{E}_{U}\left(f(F) H_{i, U}(F, V)\right), \quad i=1, \ldots, d$, with
$H_{i, U}(F, V)=\sum_{j=1}^{d}\left(V \widehat{\sigma}_{F}^{j i} L F^{j}-\left\langle D\left(V \widehat{\sigma}_{F}^{j i}\right), D F^{j}\right\rangle-V \widehat{\sigma}_{F}^{j i}\left\langle D \ln U, D F^{j}\right\rangle\right)$.
B. Let Q_{d} be the Poisson kernel in \mathbb{R}^{d} given in $\frac{\text { den }}{\left(\frac{2.2)}{4} .\right.}$. Then for every $p>d$ one has

$$
\begin{equation*}
\mathbb{E}_{U}\left(\left|\nabla Q_{d}(F-x)\right|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \leq C_{p, d} \mathbb{E}_{U}\left(\left|H_{U}(F, 1)\right|^{p}\right)^{k_{p, d}} \tag{2.5}
\end{equation*}
$$

Mall5'
where $C_{p, d}$ is a universal constant depending on p and d and $k_{p, d}=(d-1) /(1-d / p)$.
C. Under \mathbb{P}_{U}, the law of F is absolutely continuous and has a continuous density $p_{F, U}$ which may be represented as

$$
\begin{equation*}
p_{F, U}(x)=\sum_{i=1}^{d} \mathbb{E}_{U}\left(\partial_{i} Q_{d}(F-x) H_{i, U}(F, 1)\right) . \tag{2.6}
\end{equation*}
$$

Mall5'

Moreover, there exist constants $C>0$ and $p, q>1$ depending on d only such that

$$
\begin{equation*}
p_{F, U}(x) \leq C \gamma_{F, U}(p)^{q} n_{F, U}(p)^{q} m_{U}(p)^{q} \tag{2.7}
\end{equation*}
$$

with $m_{U}(p)$ given in (Mall1,

$$
\begin{equation*}
\gamma_{F, U}(p)=1+\mathbb{E}_{U}\left(\left|\operatorname{det} \sigma_{F}\right|^{-p}\right) \quad \text { and } \quad n_{F, U}(p)=1+\|F\|_{2, p, U}+\|L F\|_{p, U} \tag{2.8}
\end{equation*}
$$

Finally, if $V \in \mathbb{D}^{1, \infty}$ then there exist $C>0$ and $p, q>1$ depending on d such that

$$
\begin{equation*}
p_{F, U V}(x) \leq C \gamma_{F, U}(p)^{q} n_{F, U}(p)^{q} m_{U}(p)^{q}\|V\|_{1, p, U} . \tag{2.9}
\end{equation*}
$$

Proof. A. The standard integration by parts formula in Malliavin calculus gives (vector notations)

$$
\mathbb{E}_{U}(\nabla f(F) V)=\mathbb{E}(\nabla f(F) U V)=\mathbb{E}(f(F) H(F, U V))
$$

where, setting $D U=U \times D(\ln U)$, one has

$$
\begin{aligned}
H(F, U V) & =V U \widehat{\sigma}_{F} L F-\left\langle D\left(V U \widehat{\sigma}_{F}\right), D F\right\rangle \\
& \left.=U\left(V \widehat{\sigma}_{F} L F-\left\langle D\left(V \widehat{\sigma}_{F}\right), D F\right\rangle\right)-V \widehat{\sigma}_{F}\langle D \ln U, D F\rangle\right),
\end{aligned}
$$

So, $H(F, U V)=U H_{U}(F, V)$, and $\left(\frac{\mathrm{Mal15}}{(2.4) \text { is proved. }}\right.$
B. This point straightforyardly follows from the results and the techniques in Bally and Caramellino [3].

$$
\begin{equation*}
\left\|H_{U}(F, V)\right\|_{p, U} \leq C \gamma_{F, U}(p)^{q} n_{F, U}(p)^{q} m_{U}(p)\|V\|_{1, p, U} \tag{2.10}
\end{equation*}
$$

holding for suitable $C>0$ and $p, q_{1} 1$ depending on d only. This can be proved by applying the Hölder inequality to (2.4) (further details can be found in the proof of
 both (2.5) and (2.10), one gets (2.7). Finally, in order , to prove (2.9) we formally write (the rigorous arguments can be found in $[3]$):

$$
\begin{aligned}
p_{F, U V}(x) & =\mathbb{E}_{U V}\left(\delta_{0}(F-x)\right)=\mathbb{E}_{U V}\left(\triangle Q_{d}(F-x)\right)=\mathbb{E}_{U}\left(\triangle Q_{d}(F-x) V\right) \\
& =\mathbb{E}_{U}\left(\left\langle\nabla Q_{d}(F-x), H_{U}(F, V\rangle\right) .\right.
\end{aligned}
$$

Then using $\left(\frac{\text { Mal15 }}{2.5) \text { an }} \mathrm{d}\left(\frac{\text { Bis4 }}{2.10}\right)\right.$ one obtains $\left(\begin{array}{l}\text { Bis3 } \\ (2.9) .\end{array}\right.$

2.2 The distance between two density functions

We compare now the densities of the laws of two random variables under \mathbb{P}_{U}.
prop-dist Proposition 2.2. Assume that (㱛.1) holds. Let $F=\left(F_{1}, \ldots, F_{d}\right)$ and $G=\left(G_{1}, \ldots\right.$, $\left.G_{d}\right)$ be such that $F_{i}, G_{i} \in \mathbb{D}^{2, \infty}, i=1, \ldots, d$, and

$$
\left.\gamma_{F, G, U}(p):=1+\sup _{0 \leq \varepsilon \leq 1} \mathbb{E}_{U}\left(\left(\operatorname{det} \sigma_{G+\varepsilon(F-G)}\right)^{-p}\right)\right)<\infty, \quad \forall p \in \mathbb{N}
$$

Then under \mathbb{P}_{U} the laws of F and G are absolutely continuous with respect to the Lebesgue measure with continuous densities $p_{F, U}$ and $p_{G, U}$ respectively. Moreover, there exist a constant $C>0$ and two integers $p, q>1$ depending on d only such that

$$
\begin{equation*}
\left|p_{F, U}(y)-p_{G, U}(y)\right| \leq C \gamma_{F, G, U}(p)^{q} n_{F, G, U}(p)^{q} m_{U}(p)^{q}\left\|\Delta_{2}(F, G)\right\|_{p, U} \tag{2.11}
\end{equation*}
$$

$$
\begin{align*}
& \Delta_{2}(F, G)=|D(F-G)|+\left|D^{(2)}(F-G)\right|+|L(F-G)|, \tag{2.12}\\
& n_{F, G, U}(p)=1+\|F\|_{2, p, U}+\|G\|_{2, p, U}+\|L F\|_{p, U}+\|L G\|_{p, U} .
\end{align*}
$$

Moreover, since $|U| \leq 1$ almost surely, using Meyer's inequality one has

$$
\begin{equation*}
\left|p_{F, U}(y)-p_{G, U}(y)\right| \leq C \gamma_{F, G, U}(p)^{q} m_{U}(p)^{q}\left(1+\|F\|_{2, p}+\|G\|_{2, p}\right)^{q}\|F-G\|_{2, p} \tag{2.13}
\end{equation*}
$$

Proof. Throughout this proof, C, p, q (that can vary from line to line) will be universal constants depending on d only
By applying Lemma $\frac{1}{2} .1$, we first notice that under \mathbb{P}_{U} the laws of F and G are both absolutely continuous with respect to the Lebesgue measure and the densities can be written as

$$
\begin{align*}
& p_{F, U}(y)=\mathbb{E}_{U}\left(\left\langle\nabla Q_{d}(F-y), H_{U}(F, 1)\right\rangle\right) \text { and } \\
& p_{G, U}(y)=\mathbb{E}_{U}\left(\left\langle\nabla Q_{d}(G-y), H_{U}(G, 1)\right\rangle\right) . \tag{2.14}
\end{align*}
$$

Step 1. We prove that for $V \in \mathbb{D}^{1, \infty}$, on the set $\{U \neq 0\}$ one has

$$
\begin{equation*}
\left|H_{U}(F, V)-H_{U}(G, V)\right| \leq C A_{F, G} B_{F, G}(1+|D \ln U|)(|V|+|D V|) \times \Delta_{2}(F, G) \tag{2.15}
\end{equation*}
$$

where on the set $\{U \neq 0\}$ (that is, where the inverse Malliavin covariance matrices $\widehat{\sigma}_{F}$ and $\widehat{\sigma}_{G}$ are actually well defined) the above quantities are equal to

$$
\begin{aligned}
& A_{F, G}=\left(1 \vee \operatorname{det} \widehat{\sigma}_{F}\right)^{2}\left(1 \vee \operatorname{det} \widehat{\sigma}_{G}\right)^{2} \\
& B_{F, G}=\left(1+|D F|+|D G|+\left|D^{(2)} F\right|+\left|D^{(2)} G\right|\right)^{d(d-1)}(1+|L F|+|L G|)
\end{aligned}
$$

So, we work on the set $\{U \neq 0\}$. We first notice that

$$
\begin{aligned}
\left|\widehat{\sigma}_{F}^{i, j}-\widehat{\sigma}_{G}^{i, j}\right| \leq & C\left(1 \vee \operatorname{det} \widehat{\sigma}_{F}\right)\left(1 \vee \operatorname{det} \widehat{\sigma}_{G}\right)|D(F-G)|(|D F|+|D G|)^{d(d-1)} \\
\left|D \widehat{\sigma}_{F}^{i, j}-D \widehat{\sigma}_{G}^{i, j}\right| \leq & C\left(1 \vee \operatorname{det} \widehat{\sigma}_{F}\right)^{2}\left(1 \vee \operatorname{det} \widehat{\sigma}_{G}\right)^{2}\left(|D(F-G)|+\left|D^{(2)}(F-G)\right|\right) \\
& \times\left(|D F|+|D G|+\left|D^{(2)} F\right|+\left|D^{(2)} G\right|\right)^{d(d-1)}
\end{aligned}
$$

Then a straightforward computation gives $\left(\frac{\text { Ma.13 }}{2.15}\right)$. Now, using $\left(\frac{\text { Mal13 }}{(2.15)}\right.$ and the Hölder inequality one has

$$
\begin{equation*}
\left\|H_{U}(F, V)-H_{U}(G, V)\right\|_{p, U} \leq C n_{F, G, U}\left(p^{\prime}\right)^{q} m_{U}\left(p^{\prime}\right)\|V\|_{1, p^{\prime}, U}\left\|\Delta_{2}(F, G)\right\|_{p^{\prime}, U} \tag{2.16}
\end{equation*}
$$

Step 2. By using arguments similar to the ones developed in Step 1, we get

$$
\begin{equation*}
\left\|H_{U}(F, V)\right\|_{p, U} \leq C \gamma_{F, U}\left(p^{\prime}\right)^{q} n_{F, U}\left(p^{\prime}\right)^{q} m_{U}\left(p^{\prime}\right)\|V\|_{1, p^{\prime}, U} \tag{2.17}
\end{equation*}
$$

 by using $\left(\frac{D^{125}}{2.17}\right)$ with $V=1$ one gets

$$
\begin{equation*}
\left\|\nabla Q_{d}(F-y)\right\|_{p /(p-1), U} \leq C \gamma_{F, U}\left(p^{\prime}\right)^{q} n_{F, U}\left(p^{\prime}\right)^{q} m_{U}\left(p^{\prime}\right)^{q} \tag{2.18}
\end{equation*}
$$

Step 3. By using (l (2.14)) we can write

$$
\begin{aligned}
p_{F, U}(y)-p_{G, U}(y)= & \mathbb{E}_{U}\left(\left\langle\nabla Q_{d}(F-y)-\nabla Q_{d}(G-y), H_{U}(G, 1)\right\rangle\right)+ \\
& +\mathbb{E}_{U}\left(\left\langle\nabla Q_{d}(F-y), H_{U}(F, 1)-H_{U}(G, 1)\right\rangle\right) \\
= & : I+J .
\end{aligned}
$$

Using $\left(\frac{\text { Mall }}{2.16}\right)$ we obtain

$$
|J| \leq C \gamma_{F, G, U}(p)^{q} n_{F, G, U}(p)^{q} m_{U}(p)^{q}\left\|\Delta_{2}(F, G)\right\|_{p, U}
$$

We study now the quantity I. For $\lambda \in[0,1]$ we denote $F_{\lambda}=G+\lambda(F-G)$ and we use Taylor's expansion to obtain

$$
I=\sum_{k, j=1}^{d} R_{k, j} \quad \text { with } \quad R_{k, j}=\int_{0}^{1} \mathbb{E}_{U}\left(\partial_{k} \partial_{j} Q_{d}\left(F_{\lambda}-y\right) H_{j, U}(G, 1)(F-G)_{k}\right) d \lambda
$$

Let $V_{k, j}=H_{j, U}(G, 1)(F-G)_{k}$. Using again the integration by parts formula (in respect to F_{λ}) we obtain

$$
R_{k, j}=\int_{0}^{1} \mathbb{E}_{U}\left(\partial_{j} Q_{d}\left(F_{\lambda}-y\right) H_{k, U}\left(F_{\lambda}, V_{k, j}\right)\right) d \lambda
$$

Now, one has $\mathbb{E}_{\left[\mathbb{E}_{4}\right.}\left(\left(\operatorname{det} \sigma_{\text {Bisis }}\right)_{4}^{-p}\right) \leq \gamma_{F, G, U}(p)<\infty$ for every $\lambda \in[0,1]$ and $p \geq 1$. So, we can use (2.18) and (2.17) with $F=F_{\lambda}$, and we get

$$
\begin{aligned}
\left|R_{k, j}\right| & \leq C \gamma_{U, F, G}(p)^{q} n_{U, F, G}(p)^{q} m_{U}(p)^{q}\left\|V_{k, j}\right\|_{1, p, U} \\
& \leq C^{\prime} \gamma_{U, F, G}(p)^{q^{\prime}} n_{U, F, G}\left(p^{\prime}\right)^{q^{\prime}} m_{U}\left(p^{\prime}\right)^{q^{\prime}}\left\|\Delta_{2}(F, G)\right\|_{p^{\prime}, U}
\end{aligned}
$$

U-psi Example 2.3. We give here an example pflocalizing function giving rise to a localizing random variable \bar{U} that satisfies $\frac{(2) 1) .}{(2)}$ For $a>0$, set $\psi_{a}: \mathbb{R} \rightarrow \mathbb{R}_{+}$as

$$
\begin{equation*}
\psi_{a}(x)=1_{|x| \leq a}+\exp \left(1-\frac{a^{2}}{a^{2}-(x-a)^{2}}\right) 1_{a<|x|<2 a} \tag{2.19}
\end{equation*}
$$

Then $\psi_{a} \in C_{b}^{1}(\mathbb{R}), 0 \leq \psi_{a} \leq 1$ and for every $p \geq 1$ one has

$$
\sup _{x}\left|\left(\ln \psi_{a}(x)\right)^{\prime}\right|^{p} \psi_{a}(x) \leq \frac{4^{p}}{a_{i}^{p}} \sup _{t \geq 0}\left(t^{2 p} e^{1-t}\right)<\infty .
$$

For $\Theta_{i} \in \mathbb{D}^{1, \infty}$ and $a_{i}>0, i=1, \ldots, \ell$, we define

$$
\begin{equation*}
\bar{U}=\prod_{i=1}^{\ell} \psi_{a_{i}}\left(\Theta_{i}\right) \tag{2.20}
\end{equation*}
$$

Then $\bar{U} \in \mathbb{D}^{1, \infty}, \bar{U} \in[0,1]$ and (2all1 $_{(2.1)}$ holds. In fact, one has

$$
\begin{aligned}
|D \ln \bar{U}|^{p} \bar{U} & =\left|\sum_{i=1}^{\ell}\left(\ln \psi_{a_{i}}\right)^{\prime}\left(\Theta_{i}\right) D \Theta_{i}\right|^{p} \prod_{j=1}^{\ell} \psi_{a_{j}}\left(\Theta_{j}\right) \\
& \leq\left(\sum_{i=1}^{\ell}\left|\left(\ln \psi_{a_{i}}\right)^{\prime}\left(\Theta_{i}\right)\right|^{2}\right)^{p / 2}\left(\sum_{i=1}^{\ell}\left|D \Theta_{i}\right|^{2}\right)^{p / 2} \prod_{j=1}^{\ell} \psi_{a_{j}}\left(\Theta_{j}\right) \\
& \leq c_{p} \sum_{i=1}^{\ell}\left|\left(\ln \psi_{a_{i}}\right)^{\prime}\left(\Theta_{i}\right)\right|^{p} \psi_{a_{i}}\left(\Theta_{i}\right) \times|D \Theta|^{p} \\
& \leq C_{p} \sum_{i=1}^{\ell} \frac{1}{a_{i}^{p}}|D \Theta|^{p}
\end{aligned}
$$

for a suitable $C_{p}>0$, so that

$$
\begin{equation*}
\mathbb{E}\left(|D \ln \bar{U}|^{p} \bar{U}\right) \leq C_{p} \sum_{i=1}^{\ell} \frac{1}{a_{i}^{p}} \times \mathbb{E}\left(|D \Theta|^{p}\right) \leq C_{p} \sum_{i=1}^{\ell} \frac{1}{a_{i}^{p}} \times\|\Theta\|_{1, p}^{p}<\infty . \tag{2.21}
\end{equation*}
$$

Using the localizing function in $\left(\frac{\text { Ma1110 }}{2.19)}\right.$ and by applying Proposition prop-dist 2.2 we get the following result.
th-dist Theorem 2.4. Assume that (变.1) hallds. Let $F=\left(F_{1}, \ldots, F_{d}\right)$ and $G=\left(G_{1}, \ldots, G_{d}\right)$ with $F_{i}, G_{i} \in \mathbb{D}^{2, \infty}$ and such that for every $p \in \mathbb{N}$ one has

$$
\left.\left.\gamma_{F, U}(p):=1+\mathbb{E}_{U}\left(\left(\operatorname{det} \sigma_{F}\right)^{-p}\right)\right)<\infty \quad \text { and } \quad \gamma_{G, U}(p):=1+\mathbb{E}_{U}\left(\left(\operatorname{det} \sigma_{G}\right)^{-p}\right)\right)<\infty
$$

Then under \mathbb{P}_{U}, the laws of F and G are absolutely continuous with respect to the Lebesgue measure, with continuous densities $p_{F, U}$ and $p_{G, U}$ respectively, and there exist a constant $C>0$ and two integers $p, q>1$ depending on d only such that

$$
\begin{equation*}
\left|p_{F, U}(y)-p_{G, U}(y)\right| \leq C\left(\gamma_{G, U}(p) \vee \gamma_{F, U}(p)\right)^{q} n_{F, G, U}(p)^{q} m_{U}(p)^{q} \times\left\|\Delta_{2}(F, G)\right\|_{p, U} \tag{2.22}
\end{equation*}
$$

with $n_{F, G, U}(p)$ and $\Delta_{2}(F, G)$ given in (2.12) (2alld $m_{U}(p)$ given in (12.1).
Proof. Set $R=F-G$. It is easy to check that for every $\lambda \in[0,1]$ one has

$$
\begin{equation*}
\operatorname{det} \sigma_{G+\lambda R} \geq \operatorname{det} \sigma_{G}-\alpha_{d}|D R||D G|(1+|D F|+|D G|)^{d-1} \tag{2.23}
\end{equation*}
$$

for a suitable $\alpha_{d}>0$ depending on d only. For ψ_{a} as in $\left(\frac{M a 1110}{2.19}\right)$, we define

$$
V=\psi_{1 / 4}(H) \quad \text { with } \quad H=\frac{\alpha_{d}|D R||D G|(1+|D F|+|D G|)^{d-1}}{\operatorname{det} \sigma_{G}}
$$

so that if $V \neq 0$ then $\operatorname{det} \sigma_{G+\lambda R} \geq \frac{1}{2} \operatorname{det} \sigma_{G}$. It follows that $\gamma_{F, G, U V}(p) \leq C \gamma_{G, U}(p)$, C denoting a suitable positive constant (which will vary in the following lines). We also have $m_{U V}(p) \leq C\left(m_{U}(p)+\mathbb{E}\left(U V|D \ln V|^{p}\right)\right)$ and by (2.21) we have

$$
\mathbb{E}\left(U V|D \ln V|^{p}\right) \leq C\|D H\|_{p, U}^{p} \leq C n_{F, G, U}(\bar{p})^{\bar{q}} \gamma_{G, U}(\bar{p})^{\bar{q}}
$$

for some \bar{p}, \bar{q}, so that $m_{U V}(p) \leq C m_{U}(p) n_{F, G, U}(\bar{p})^{\bar{q}} \gamma_{G, U}(\bar{p})^{\bar{q}}$. So, we can apply (12.112 with localization $U V$ and we get

$$
\left|p_{F, U V}(y)-p_{G, U V}(y)\right| \leq C\left(\gamma_{F, U}(p) \vee \gamma_{G, U}(p)\right)^{q} n_{F, G, U}(p)^{q} m_{U}(p)^{q}\left\|\Delta_{2}(F, G)\right\|_{p, U}
$$

We write now

$$
\left|p_{F, U}(y)-p_{G, U}(y)\right| \leq\left|p_{F, U V}(y)-p_{G, U V}(y)\right|+\left|p_{F, U(1-V)}(y)\right|+\left|p_{G, U(1-V)}(y)\right|
$$

and we have already seen that the first addendum on the r.h.s. behaves as desired. So, it remains to see that ${ }_{\text {Bis }}$ also the remaining two terms have the right behavior. To this purpose, we use (2.9). So, we have

$$
\left|p_{F, U(1-V)}(y)\right| \leq \gamma_{F, U}(p)^{q} n_{F, 1, U}(p)^{q} m_{U}(p)^{q} \times\|1-V\|_{1, p, U}
$$

We recall that $1-V \neq 0$ implies that $H \geq 1 / 8$, so that

$$
\begin{align*}
\|1-V\|_{1, p, U}^{p} & =\mathbb{E}_{U}\left(|1-V|^{p}\right)+\mathbb{E}_{U}\left(|D V|^{p}\right) \leq C\left(\mathbb{P}_{U}(H>1 / 8)+\mathbb{E}_{U}\left(V|D \ln V|^{p}\right)\right) \\
& \leq C\left(\mathbb{E}_{U}\left(H^{p}\right)+\mathbb{E}_{U}\left(|D H|^{p}\right)\right) \tag{2.24}
\end{align*}
$$

in which we have used ($\frac{\text { Mall11 }}{2.21)}$. Now, one has

$$
\begin{aligned}
\mathbb{E}_{U}\left(|H|^{p}\right) & \leq C \gamma_{G, U}(\bar{p})^{\bar{q}} n_{F, G, U}(\bar{p})^{\bar{q}} \mathbb{E}_{U}\left(|D(F-G)|^{2 p}\right)^{1 / 2} \text { and } \\
\mathbb{E}_{U}\left(|D H|^{p}\right) & \leq C \gamma_{G, U}(\bar{p})^{\bar{q}} n_{F, G, U}(\bar{p})^{\bar{q}}\left(\mathbb{E}_{U}\left(|D(F-G)|^{2 p}\right)^{1 / 2}+\mathbb{E}_{U}\left(\left|D^{(2)}(F-G)\right|^{2 p}\right)^{1 / 2}\right)
\end{aligned}
$$

and by inserting above we get

$$
\|1-V\|_{1, p, U} \leq C \gamma_{G, U}(\bar{p})^{\bar{q}} n_{F, G, U}(\bar{p})^{\bar{q}}\left\|\Delta_{2}(F, G)\right\|_{2 p, U} .
$$

This gives

$$
\left|p_{F, U(1-V)}(y)\right| \leq C\left(\gamma_{F, U}(p) \vee \gamma_{G, U}(p)\right)^{q} n_{F, G, U}(p)^{q} m_{U}(p)^{q}\left\|\Delta_{2}(F, G)\right\|_{p, U}
$$

for suitable constants $C>0$ and $p, q>1$. Similarly, we get

$$
\left|p_{G, U(1-V)}(y)\right| \leq C\left(\gamma_{F, U}(p) \vee \gamma_{G, U}(p)\right)^{q} n_{F, G, U}(p)^{q} m_{U}(p)^{q}\left\|\Delta_{2}(F, G)\right\|_{p, U}
$$

The statement now follows.

3 Small perturbations of a Gaussian random variable

rturbation

3.1 Preliminary estimates

We consider here a r.v. of the type $F=x+G+R \in \mathbb{R}^{d}$ where $R \in \mathbb{D}^{2, \infty}$ and

$$
G=\sum_{j=1}^{\infty} \int_{0}^{\infty} h_{j}(s) d W_{s}^{j}
$$

with $h_{j}:[0,+\infty) \rightarrow \mathbb{R}^{d}$ deterministic and square integrable. Then G is a centered Gaussian random variable of covariance matrix $M_{G}=\left(M_{G}^{k, p}\right)_{k, p=1, \ldots, d}$, with

$$
M_{G}^{k, p}=\int_{0}^{\infty}\left\langle h^{k}(s), h^{p}(s)\right\rangle d s=\sum_{j=1}^{\infty} \int_{0}^{\infty} h_{j}^{k}(s) h_{j}^{p}(s) d s, \quad k, p=1, \ldots, d .
$$

We assume that M_{G} is invertible and we denote by $g_{M_{G}}$ the density of G that is

$$
g_{M_{G}}(y)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det} M_{G}}} \exp \left(-\left\langle M_{G}^{-1} y, y\right\rangle\right)
$$

Our aim is to give estimates of the density of F in terms of $g_{M_{G}}$. To this purpose, we use a localizing r.v. U of the form (2.20).

$$
\begin{equation*}
U=\psi_{c_{*}^{2} / 2}\left(|D \bar{R}|^{2}\right) \quad \text { with } \quad \bar{R}=M_{G}^{-1 / 2} R . \tag{3.1}
\end{equation*}
$$

where c_{*} is such that $\alpha_{d}(1+2 d)^{d} c_{*}\left(1+c_{*}\right)^{d-1} \leq 1 / 2, \alpha_{d}$ denoting the constant in (2.23). Then the following statements hold.
i) Under \mathbb{P}_{U}, the law of F has a smooth density $p_{F, U}$ and one has

$$
\sup _{y \in \mathbb{R}^{d}}\left|p_{F, U}(y)-g_{M_{G}}(y-x)\right| \leq \varepsilon\left(M_{G}, R\right), \quad y \in \mathbb{R}^{d}
$$

where

$$
\varepsilon\left(M_{G}, R\right):=\frac{c_{d}}{\sqrt{\operatorname{det} M_{G}}}\left(1+\|\bar{R}\|_{2, q_{d}}\right)^{\ell_{d}}\|\bar{R}\|_{2, q_{d}}
$$

Here c_{d}, q_{d}, ℓ_{d} are some universal positive constants depending on d only.
ii) If the law of F under \mathbb{P} has a density p_{F}, then one has

$$
p_{F}(y) \geq g_{M_{G}}(y-x)-\varepsilon\left(M_{G}, R\right), \quad y \in \mathbb{R}^{d} .
$$

Proof. i) Suppose first that $x=0$ and $M_{G}=I, I$ denoting the identity matrix, so that $\bar{R}=R$. We notice that $\operatorname{det} \sigma_{G}=1$, which gives $\gamma_{G, U}(p) \leq 2$ for every $p_{\text {and }}$ a $|D G|^{2}=d$. Moreover, on the set $\{U \neq 0\}$ one has $|D R| \leq c_{*}$ and by using $\left(\frac{121 \text { pha-d }}{2.23)}\right.$ straightforward computations give

$$
\operatorname{det} \sigma_{F} \geq 1-\alpha_{d}(1+2 d)^{d}|D R|(1+|D R|)^{d-1} \geq 1-\alpha_{d}(1+2 d)^{d} c_{*}\left(1+c_{*}\right)^{d-1} \geq \frac{1}{2}
$$

 has $m_{U}(p) \leq 1+\|R\|_{2,2 p}^{p}$. We can then apply Theorem 2.4 to the pair F and G, with localizing r.v. U. By straightforward computations and the use of the Meyer inequality, one has $n_{F, G, U}(p) \leq C_{p}\left(1 \frac{1}{M_{2 l}}\|R\|_{2} \|_{2,2 p}\right)^{2 p}$ and $\left.\| \hat{M}_{\text {ara }}\left(F_{12} G\right)\right)\left\|_{p} \leq C_{p}\right\| R \|_{2,2 p}$, with $n_{F, G, U}(p)$ and $\Delta_{2}(F, G)$ given in (2.12). Therefore, (2.22) gives

$$
\left|p_{F, U}(y)-p_{G, U}(y)\right| \leq \bar{c}_{1}\left(1+\|R\|_{2, \bar{q}_{1}}\right)^{\bar{\varphi}_{1}}\|R\|_{2, \bar{q}_{1}} \quad \text { for every } y \in \mathbb{R}^{d}
$$

where $\bar{c}_{1}>0$ and $\bar{q}_{1}, \bar{\ell}_{1}>1$ are $_{\text {Bonstants depending on } d \text { only. It remains to }}$ compare $p_{G, U}$ with $p_{G}=g_{I}$: from (2.9) (applied with $U=1, V=1-U$ and $F=G$) we immediately have
$\left|p_{G, U}(x)-p_{G}(x)\right|=p_{G, 1-U}(x) \leq C \gamma_{G, 1}(p)^{q} n_{G, 1}(p)^{q} m_{1}(p)^{q}\|1-U\|_{1, p}<C\|1-U\|_{1, p}$, for a suitable $C>0$ and $p>1$ depending on d only. Nowforealling that $U \neq 1$ for $|D R|>c_{*} / \sqrt{2}$, as already seen in the proof of Theorem $3.3\left(\right.$ see $\left.\left(\frac{1}{2} 24\right)\right)$ we have

$$
\|1-U\|_{1, p}^{p} \leq C\left(\mathbb{E}\left(|D R|^{2 p}\right)+\mathbb{E}\left(\left.\left.|D| D R\right|^{2}\right|^{p}\right)\right)
$$

so that

$$
\left|p_{G, U}(y)-p_{G}(y)\right| \leq \bar{c}_{2}\left(1+\|R\|_{2, \bar{q}_{2}}\right)^{\bar{e}_{2}}\|R\|_{2, \bar{q}_{1}} \quad \text { for every } y \in \mathbb{R}^{d}
$$

and the statement follows. As for the general case, it suffices to apply the already proved estimate to $\bar{F}=M_{G}^{-1 / 2}(F-x), \bar{G}=M_{G}^{-1 / 2} G$ and $\bar{R}=M_{G}^{-1 / 2} R$ and then to use the change of variable theorem.
ii) It immediately follows from $p_{F}(y) \geq p_{F, U}(y)$.

3.2 Main results

In this section, we consider a time interval of the type $[T-\delta, T]$, where $T>0$ is a fixed horizon and $0<\delta \leq T$, and we use the Malliavin calculus with respect to $W_{s}, s \in[T-\delta, T]$. In particular, we take conditional expectations with respect to $\mathcal{F}_{T-\delta}$. Therefore, for $V=\left(V^{1}, \ldots, V^{d}\right), V_{i} \in \mathbb{D}^{L, p}$, we define the following conditional Malliavin Sobolev norms:

$$
\begin{equation*}
\|V\|_{\delta, L, p}^{p}=\mathbb{E}\left(|V|^{p} \mid \mathcal{F}_{T-\delta}\right)+\sum_{l=1}^{L} \mathbb{E}\left(\left|D^{(l)} V\right|^{p} \mid \mathcal{F}_{T-\delta}\right) . \tag{3.2}
\end{equation*}
$$

Let F denote a d-dimensional functional on the Wiener space which is measurable w.r.t. \mathcal{F}_{T} and assume that for $\delta \in(0, T]$ the following decomposition holds:

$$
\begin{equation*}
F=F_{T-\delta}+G_{\delta}+R_{\delta} \tag{3.3}
\end{equation*}
$$

where $F_{T-\delta}$ is measurable w.r.t. $\mathcal{F}_{T-\delta}, R_{\delta} \in\left(\mathbb{D}^{2, \infty}\right)^{d}$ and

$$
C_{\delta}=\sum_{k=1}^{\infty} \int_{T-\delta}^{T} h_{\delta}^{k}(s) d W_{s}^{k}
$$

Here $h_{\delta}^{k}(s), s \in[T-\delta, T]$ are progressively measurable processes such that $h_{\delta}^{k}(s)$ is $\mathcal{F}_{T-\delta}$-measurable for every $s \in[T-\delta, T]$ and $\sum_{k=1}^{\infty} \int_{T-\delta}^{T}\left|h_{\delta}^{k}(s)\right|^{2} d s<\infty$ a.s. In particular, conditionally on $\mathcal{F}_{T-\delta}$, the random variable G_{δ} is centered and Gaussian with covariance matrix

$$
C_{\delta}^{i j}=\sum_{k=1}^{\infty} \int_{T-\delta}^{T} h_{\delta}^{k, i}(s) h_{\delta}^{k, j}(s) d s \quad 1 \leq i, j \leq d .
$$

On the set $\left\{\operatorname{det} C_{\delta} \neq 0\right\} \in \mathcal{F}_{T-\delta}$, we define the (random) norm

$$
|x|_{\delta}:=\left|C_{\delta}^{-1 / 2} x\right|, \quad x \in \mathbb{R}^{d}
$$

and for $q \in \mathbb{N}$, we consider the following (random) quantity

$$
\begin{equation*}
\theta_{\delta, q}=\left\|C_{\delta}^{-1 / 2} R_{\delta}\right\|_{\delta, 2, q} . \tag{3.4}
\end{equation*}
$$

Set now $\overline{\mathbb{P}}_{\delta}(\omega, \cdot)$ the measure induced by $\overline{\mathbb{E}}_{\delta}(\omega, X)=\mathbb{E}\left(X \psi\left(\left|D R_{\delta}\right|^{2}\right) \mid \mathcal{F}_{T-\delta}\right)(\omega)$, where $\psi=\psi_{1 / 8}$ is as in (3.1). By developing in a conditional form the arguments as in the proof of Proposition $\begin{aligned} & \text { exp-est } \\ & 3.1, \text { on }\end{aligned}$ the set $\left\{\operatorname{det} C_{\delta} \neq 0\right\}$ one gets that under $\overline{\mathbb{P}}_{\delta}(\omega, \cdot)$ the law of F has a regular density w.r.t. the Lebesgue measure. Therefore, there exists a function $\bar{p}_{F, \delta}(\omega, z)$ which is regular as a function of z and such that

$$
\begin{equation*}
\mathbb{E}\left(f(F) \psi\left(\left|D R_{\delta}\right|^{2}\right) \mid \mathcal{F}_{T-\delta}\right)(\omega)=\int f(z) \bar{p}_{F, \delta}(\omega, z) d z, \quad \omega \in\left\{\operatorname{det} C_{\delta} \neq 0\right\} \tag{3.5}
\end{equation*}
$$

for any measurable and bounded function f.

Now, let us introduce the following sets: for $y \in \mathbb{R}^{d}$ and $r>0$, we define

$$
\begin{align*}
& \Gamma_{\delta, r}(y)=\left\{\left|F_{T-\delta}-y\right|_{\delta} \leq r\right\} \cap\left\{\operatorname{det} C_{\delta} \neq 0\right\} \cap\left\{\theta_{\delta, q_{d}} \leq a_{d} e^{-r^{2}}\right\} \tag{3.6}\\
& \widetilde{\Gamma}_{\delta, r}(y)=\left\{\left|F_{T-\delta}-y\right|_{\delta} \leq r / 2\right\} \cap\left\{\operatorname{det} C_{\delta} \neq 0\right\} \cap\left\{\theta_{\delta, q_{d}} \leq a_{d} e^{-r^{2}}\right\}, \tag{3.7}
\end{align*}
$$

where

$$
a_{d}=\frac{1}{c_{d} 2^{\ell_{d}+1}(2 \pi)^{d / 2}}
$$

and q_{d}, ℓ_{d} and c_{d} are the universal constants defined in (i) of Proposition 3.1. Then we have
 let $\Gamma_{\delta, r}(y)$ be the set in (3.6). Then for every non negative and measurable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\omega \in\left\{\operatorname{det} C_{\delta} \neq 0\right\}$ one has

$$
\mathbb{E}\left(f(F) \mid \mathcal{F}_{T-\delta}\right)(\omega) \geq \frac{e^{-r^{2}}}{2(2 \pi)^{d / 2}}\left(\operatorname{det} C_{\delta}\right)^{-1 / 2} \int f(z) \mathbf{1}_{\Gamma_{\delta, r}(z)} d z
$$

Proof. Let $\omega \in\left\{\operatorname{det} C_{\delta} \neq 0\right\}$. By using (3.5), for any measurable and non negative function f we have

$$
\begin{aligned}
\mathbb{E}\left(f(F) \mathcal{F}_{T-\delta}\right)(\omega) & \geq \mathbb{E}\left(f(F) \psi\left(\left|D R_{\delta}\right|^{2}\right) \mid \mathcal{F}_{T-\delta}\right)(\omega)=\int f(z) \bar{p}_{F, \delta}(\omega, z) d z \\
& \geq \int f(z) \bar{p}_{F, \delta}(\omega, z) \mathbf{1}_{\Gamma_{\delta, r}(z)} d z
\end{aligned}
$$

Using Proposition $\stackrel{\text { exp-est }}{3.1 \text { in a }}$ conditional form (with respect to $\mathcal{F}_{T-\delta}$) we obtain

$$
\bar{p}_{F, \delta}(\omega, z) \geq g_{C_{\delta}(\omega)}\left(z-F_{T-\delta}(\omega)\right)-\varepsilon\left(C_{\delta}(\omega), R_{\delta}\right)(\omega)
$$

where, by using (3.4 theta,

$$
\begin{aligned}
\varepsilon\left(C_{\delta}, R_{\delta}\right)(\omega) & \leq \frac{c_{d}}{\sqrt{\operatorname{det} C_{\delta}}}\left(1+\left\|C_{\delta}^{-1 / 2} R_{\delta}\right\|_{\delta, 2, q_{d}}\right)^{\ell_{q}}\left\|C_{\delta}^{-1 / 2} R_{\delta}\right\|_{\delta, 2, q_{d}} \\
& =\frac{c_{d}}{\sqrt{\operatorname{det} C_{\delta}}}\left(1+\theta_{\delta, q_{d}}\right)^{\ell_{q}} \theta_{\delta, q_{d}} .
\end{aligned}
$$

If $\omega \in \Gamma_{\delta, r}(z)$ then $\theta_{\delta, q_{d}} \leq a_{d} e^{-r^{2}} \leq 1$ so that

$$
\varepsilon\left(C_{\delta}, R_{\delta}\right)(\omega) \leq \frac{1}{2} \times \frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det} C_{\delta}}} e^{-r^{2}}
$$

For $\omega \in \Gamma_{\delta, r}(z)$ we also have

$$
\left\langle C_{\delta}^{-1}\left(F_{T-\delta}-z\right), F_{T-\delta}-z\right\rangle=\left|F_{T-\delta}-z\right|_{\delta}^{2} \leq r^{2}
$$

so that

$$
g_{C_{\delta}}\left(z-F_{T-\delta}\right) \geq \frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det} C_{\delta}}} e^{-r^{2}}
$$

Then, by the choice of $a_{d} e^{-r^{2}}$ we obtain

$$
\bar{p}_{F, \delta}(\omega, z) \geq \frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det} C_{\delta}}} e^{-r^{2}}-\varepsilon\left(C_{\delta}, R_{\delta}\right)(\omega) \geq \frac{1}{2(2 \pi)^{d / 2} \sqrt{\operatorname{det} C_{\delta}}} e^{-r^{2}} .
$$

We conclude that

$$
\mathbb{E}\left(f(F) \mid \mathcal{F}_{T-\delta}\right)(\omega) \geq \frac{1}{2 e^{r^{2}}(2 \pi)^{d / 2}} \int f(z)\left(\operatorname{det} C_{\delta}\right)^{-1 / 2} 1_{\Gamma_{\delta, r}(z)} d z
$$

We are now ready for our main result. It involves the concept of "local densities", that we define as follows: we say that the law of a r.v. F taking values on \mathbb{R}^{d} admits a local density around $y \in \mathbb{R}^{d}$ if there exists an open neighborhood V_{y} of y such that the restriction of the law of F in V_{y} is absolutely continuous w.r.t. the Lebesgue measure Leb_{d} on \mathbb{R}^{d}. So, we have:
th-pos Theorem 3.3. For $\delta \in(0, T]$, let decomposition ($\begin{gathered}\text { deco } \\ (3.3)\end{gathered}$ hold and for $y \in \mathbb{R}^{d}, r>0$, assume that

$$
\mathbb{P}\left(\widetilde{\Gamma}_{\delta, r}(y)\right)>0,
$$

where $\widetilde{\Gamma}_{\delta, r}(y)$ is the set in (1gamma . Then there exists $\eta>0$ and $c(y)>0$ such that for every Borel measurable set $A \subset B_{\eta}(y)$ one has

$$
\mathbb{P}(F \in A) \geq c(y) \operatorname{Leb}_{d}(A)
$$

As a consequence, if the law of F admits a local density p_{F} around y then one has

$$
p_{F}(x) \geq c(y) \quad \text { for a.e. } x \in B_{\eta}(y) .
$$

Proof. For $\varepsilon>0$, set

$$
\widetilde{\Gamma}_{\delta, r, \varepsilon}(y)=\left\{\left|F_{T-\delta}-y\right|_{\delta} \leq r / 2\right\} \cap\left\{\operatorname{det} C_{\delta} \geq \varepsilon\right\} \cap\left\{\theta_{\delta, q_{d}} \leq a_{d} e^{-r^{2}}\right\} .
$$

If $\mathbb{P}\left(\widetilde{\Gamma}_{\delta, r}(y)\right)>0$ then there exists $\varepsilon>0$ such that $\mathbb{P}\left(\widetilde{\Gamma}_{\delta, r, \varepsilon}(y)\right)>0$. On the set $\left\{\operatorname{det} C_{\delta} \geq \varepsilon\right\}$, one has

$$
|\xi|_{\delta} \leq \varepsilon^{-d / 2}|\xi|, \quad \xi \in \mathbb{R}^{d} .
$$

Taking $\eta=\varepsilon^{d / 2} r / 2$, one immediately has

$$
\widetilde{\Gamma}_{\delta, r, \varepsilon}(y) \subset \Gamma_{\delta, r}(x) \quad \text { for every } x \in B_{\eta}(y)
$$

where $\Gamma_{\delta, r}(x)$ is the set in (3.6). (3ama0 Therefore, by applying Lemma $\frac{\text { lemma-pos }}{3.2 \text {, for every }}$ measurable and bounded function f whose support is included in $B_{\eta}(y)$ one has

$$
\mathbb{E}\left(f(F) \mid \mathcal{F}_{T-\delta}\right)(\omega) \geq \frac{1}{2 e^{r^{2}}(2 \pi)^{d / 2}}\left(\operatorname{det} C_{\delta}\right)^{-1 / 2} \mathbf{1}_{\Gamma_{\delta, r, \varepsilon}(y)} \int_{B_{\eta}(y)} f(x) d x
$$

and by passing to the expectation one gets the result with

$$
c(y)=\frac{1}{2 e^{r^{2}}(2 \pi)^{d / 2}} \mathbb{E}\left(\left(\operatorname{det} C_{\delta}\right)^{-1 / 2} \mathbf{1}_{\Gamma_{\delta, r, \varepsilon}(y)}\right)>0 .
$$

4 Examples

We apply now Theorem ${ }^{\frac{\text { th-pos }}{3} \text { to }}$ two cases in which a support theorem is available and we give results for the strict positivity and lower bounds for the density which involve suitable local or global non degeneracy conditions on the skeleton.

4.1 Ito processes

We consider here a process $Z_{t}=\left(X_{t}, Y_{t}\right)^{*}$, taking values on $\mathbb{R}^{d} \times \mathbb{R}^{n}$, which solves the following stochastic differential equation: as $t \leq T$,

$$
\begin{align*}
X_{t} & =x_{0}+\sum_{j=1}^{m} \int_{0}^{t} \sigma_{j}\left(X_{t}, Y_{t}\right) d W_{t}^{j}+\int_{0}^{t} b\left(X_{t}, Y_{t}\right) d t \\
Y_{t} & =y_{0}+\sum_{j=1}^{m} \int_{0}^{t} \alpha_{j}\left(X_{t}, Y_{t}\right) d W_{t}^{j}+\int_{0}^{t} \beta\left(X_{t}, Y_{t}\right) d t \tag{4.1}
\end{align*}
$$

We are interested in dealing with strict positivity and/or lower bounds for the probability density function of one component at a fixed time, say X_{T}, as a consequence of Theorem 3.3. This is a case in which a support theorem is available, and we are going to strongly use it. For diffusion processes (that is, if we deal with Z_{T} and not with X_{T} only), we get an example which is essentially the same as in the paper
 Concerning the lower bounds, we will use lower estimates for the probability that Ito processes remains in a tube around a path proved in Bally, Fernández and Meda in 扄.
So, in (${ }^{\text {lito }}$. $)$ we assume that $\sigma_{j}, b \in C_{b}^{4}\left(\mathbb{R}^{d+n} ; \mathbb{R}^{d}\right)$ and $\alpha_{j}, \beta \in C_{b}^{4}\left(\mathbb{R}^{d+n} ; \mathbb{R}^{n}\right), j=$ $1, \ldots, m$, which implies that $X_{t}^{\ell}, Y_{t}^{i} \in \mathbb{D}^{2, \infty}$ for all ℓ and i.
For $\phi \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right)$, let $z_{t}(\phi)=\left(x_{t}(\phi), y_{t}(\phi)^{*}\right.$ denote the skeleton associated to (4.1), i.e.

$$
\begin{align*}
& x_{t}(\phi)=x_{0}+\sum_{j=1}^{m} \int_{0}^{t} \sigma_{j}\left(x_{t}(\phi), y_{t}(\phi)\right) \phi_{t}^{j} d t+\int_{0}^{t} \bar{b}\left(x_{t}(\phi), y_{t}(\phi)\right) d t \\
& y_{t}(\phi)=y_{0}+\sum_{j=1}^{m} \int_{0}^{t} \alpha_{j}\left(x_{t}(\phi), y_{t}(\phi)\right) \phi_{t}^{j} d t+\int_{0}^{t} \bar{\beta}\left(x_{t}(\phi), y_{t}(\phi)\right) d t, \tag{4.2}
\end{align*}
$$

in which $\bar{b}=b-\frac{1}{2} \sum_{j=1}^{m} \partial_{\sigma_{j}} \sigma_{j}$ and $\bar{\beta}=\beta-\frac{1}{2} \sum_{j=1}^{m} \partial_{\alpha_{j}} \alpha_{j}$, where we have used the notation $\left(\partial_{g} f\right)^{i}=\left\langle\nabla f^{i}, g\right\rangle$.
For a fixed $x \in \mathbb{R}^{d}$, we set

$$
\begin{equation*}
\mathcal{C}(x)=\left\{\phi \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right): x_{T}(\phi)=x\right\} \tag{4.3}
\end{equation*}
$$

We finally consider the following set of functions: for fixed $\mu \geq 1$ and $h>0$,

$$
\begin{equation*}
L(\mu, h)=\left\{f:[0, T] \rightarrow \mathbb{R}_{+} ; f_{t} \leq \mu f_{s} \text { for all } t, s \text { such that }|t-s| \leq h\right\} . \tag{4.4}
\end{equation*}
$$

We have
th-ito Theorem 4.1. Let $Z=(X, Y)^{*}$ denote the solution of (装.1), with $\sigma_{j}, b \in C_{b}^{4}\left(\mathbb{R}^{d+n}\right.$; $\left.\mathbb{R}^{d}\right)$ and $\alpha_{j}, \beta \in C_{b}^{4}\left(\mathbb{R}^{d+n} ; \mathbb{R}^{n}\right), j=1, \ldots, m$. Let $x \in \mathbb{R}^{d}$ be fixed and suppose that $\mathcal{C}(x) \neq \emptyset$. For $\phi \in \mathcal{C}(x)$, let $z_{t}(\phi)=\left(x_{t}(\phi), y_{t}(\phi)\right)^{*}$ be as in (4.2.2).
i) Suppose there exists $\phi \in \mathcal{C}(x)$ such that $\sigma \sigma^{*}\left(x, y_{T}(\phi)\right)>0$. Then there exists $\eta>0$ and $c(x)>0$ such that for every Borel measurable set $A \subset B_{\eta}(x)$ one has

$$
\mathbb{P}\left(X_{T} \in A\right) \geq c(x) \operatorname{Leb}_{d}(A)
$$

In particular, if X_{T} admits a local density $p_{X_{T}}$ around x then $p_{X_{T}} \geq c(x)>0$ a.e. on the ball $B_{\eta}(x)$.
ii) Suppose there exists $\phi \in \mathcal{C}(x)$ such that $\left|\partial x_{t}(\phi)\right| \in L(\mu, h)$, for some $\mu \geq 1$ and $h>0$, and

$$
\sigma \sigma^{*}\left(x_{t}(\phi), y\right) \geq \lambda_{*}>0 \quad \text { for all } t \in[0, T] \text { and } y \in \mathbb{R}^{n}
$$

Then if the law of X_{T} admits a continuous local density $p_{X_{T}}$ around x one has

$$
p_{X_{T}}(x) \geq \Upsilon \exp \left[-Q\left(\Psi+\frac{1}{\lambda_{*}} \int_{0}^{T}\left|\partial_{t} x_{t}(\phi)\right| d t\right)\right]
$$

where Υ, Q, Ψ are all positive constants depending on $d, T, \mu, h, \lambda_{*}$ and vector fields $\sigma_{j}, \alpha_{j}, j=1, \ldots, m$, and b, β.
In next Proposition $\frac{\text { prop-ito }}{4.3 \text { we study the existence of a local density and we prove in }}$ particular that under the requirement in part $i i$), the local density really exists, Actually, a little bit more work would show that the non degeneracy condition (2.3) holds and by Lemma $\frac{1}{2} .1$ the local density is indeed continuous. But we are not interested here to enter in these technical arguments.
Proof of Theorem $\stackrel{\text { th-ito }}{\text { 4.1. } i})$ We take $0<\delta \leq T$ and we consider the decomposition $X_{T}=X_{T-\delta}+G_{\delta}+R_{\delta}$, where

$$
\begin{aligned}
G_{\delta} & =\sum_{j=1}^{m} \int_{T-\delta}^{T} \sigma_{j}\left(X_{T-\delta}, Y_{T-\delta}\right) d W_{t}^{j} \\
R_{\delta} & =\sum_{j=1}^{m} \int_{T-\delta}^{T}\left(\sigma_{j}\left(X_{t}, Y_{t}\right)-\sigma_{j}\left(X_{T-\delta}, Y_{T-\delta}\right)\right) d W_{t}^{j}+\int_{T-\delta}^{T} b\left(X_{t}, Y_{t}\right) d t
\end{aligned}
$$

Conditionally on $\mathcal{F}_{T-\delta}$, the covariance matrix of the Gaussian r.v. G_{δ} is

$$
C_{\delta}=\sigma \sigma^{*}\left(X_{T-\delta}, Y_{T-\delta}\right) \delta .
$$

So, we are in the framework studied in Section $\frac{\text { sect-perturbation }}{3}$ and we proceed in order to apply Theorem $\left.\frac{\text { th-pos }}{3: 2}\right)$ is proved as soon as we find $\delta, r>0$ such that $\mathbb{P}\left(\widetilde{\Gamma}_{\delta, r}(x)\right)>0$.
For $\phi \in \mathcal{C}(x)$, we denote $z^{\phi}(x)=\left(x, y_{T}(\phi)\right)$ and we take ϕ such that $\sigma \sigma^{*}\left(z^{\phi}(x)\right)>0$. We denote by $\lambda_{*}>0$ the lower eigenvalue of $\sigma \sigma^{*}\left(z^{\phi}(x)\right)$. Then, there exists $\varepsilon>0$ such that

$$
\sigma \sigma^{*}(z) \geq \frac{\lambda_{*}}{2} I_{d} \quad \text { for every } z \text { such that }\left|z-z^{\phi}(x)\right|<\varepsilon
$$

For a fixed $\delta \in(0, T]$, we have $\left|z^{\phi}(x)-z_{T-\delta}(\phi)\right|=\left|z_{T}(\phi)-z_{T-\delta}(\phi)\right| \leq C(1+$ $\left.\|\phi\|_{2}\right) \sqrt{\delta}=C_{\phi} \sqrt{\delta}$, so that if $\left|Z_{T-\delta}-z_{T-\delta}(\phi)\right|<C_{\phi} \sqrt{\delta}$ then $\left|Z_{T-\delta}-z^{\phi}(x)\right|<2 C_{\phi} \sqrt{\delta}$. We choose δ_{0} such that $2 C_{\phi} \sqrt{\delta}<\varepsilon$ for all $\delta<\delta_{0}$. So, if $\left|Z_{T-\delta}-z_{T-\delta}(\phi)\right|<C_{\phi} \sqrt{\delta}$ we get

$$
C_{\delta} \geq \frac{\lambda_{*}}{2} \delta I_{d}
$$

and in particular,

$$
\begin{aligned}
\left|X_{T-\delta}-x\right|_{\delta} & =\left|C_{\delta}^{-1 / 2}\left(X_{T-\delta}-x\right)\right| \leq\left(\frac{2}{\lambda_{*} \delta}\right)^{1 / 2}\left|X_{T-\delta}-x\right| \\
& \leq\left(\frac{2}{\lambda_{*} \delta}\right)^{1 / 2}\left|Z_{T-\delta}-z^{\phi}(x)\right|<\frac{2 \sqrt{2} C_{\phi}}{\sqrt{\lambda_{*}}}=: \frac{r}{2}
\end{aligned}
$$

Moreover, for $q \geq 2$, a standard reasoning gives

$$
\begin{aligned}
\left\|R_{\delta}\right\|_{\delta, 2, q}^{q} & =\mathbb{E}\left(\left|R_{\delta}\right|^{q} \mid \mathcal{F}_{T-\delta}\right)+\mathbb{E}\left(\sum_{l=1}^{2}\left(\int_{[T-\delta, T]^{l}}\left|D_{s_{1} \ldots s_{l}}^{(l)} R_{\delta}\right|^{2} d s_{1} \ldots d s_{l}\right)^{q / 2} \mid \mathcal{F}_{T-\delta}\right) \\
& \leq\left(C_{1, q} \delta\right)^{q},
\end{aligned}
$$

so that

$$
\begin{equation*}
\theta_{\delta, q}=\left\|C_{\delta}^{-1 / 2} R_{\delta}\right\|_{\delta, 2, q} \leq \frac{1}{\sqrt{\lambda_{*} \delta}}\left\|R_{\delta}\right\|_{\delta, 2, q} \leq C_{2, q} \sqrt{\delta} \tag{4.5}
\end{equation*}
$$

We take $\delta<\delta_{0}$ in order that $C_{2, q} \sqrt{\delta}<a_{d} e^{-r^{2}}$. For such a δ we get that $\left\{\mid Z_{T-\delta}-\right.$ $\left.z_{T-\delta}(\phi) \mid<C_{\phi} \sqrt{\delta}\right\} \subset \widetilde{\Gamma}_{\delta, r}(x)$ and by the support theorem one has $\mathbb{P}\left(\mid Z_{T-\delta}-\right.$ $\left.z_{T-\delta}(\phi) \mid<C_{\phi} \sqrt{\delta}\right)>0$, so that $\mathbb{P}\left(\widetilde{\Gamma}_{\delta, r}(x)\right)>0$.
ii) For $\xi:[0, T] \rightarrow \mathbb{R}^{d}$ and $R>0$, we set

$$
\tau_{R}^{\phi}(\xi)=\inf \left\{t:\left|\xi_{t}-x_{t}(\phi)\right| \geq R\right\}
$$

We know that there exists $\phi \in \mathcal{C}(x)$ and $\varepsilon>0$ such that if $\tau_{\varepsilon}^{\phi}(\xi)>T$ then

$$
\sigma \sigma^{*}\left(\xi_{t}, y\right) \geq \lambda_{*} I_{d}
$$

for any $t \in[0, T]$ and $y \in \mathbb{R}^{n}$. So, on the set $\left\{\tau_{\varepsilon}^{\phi}(X)>T\right\}$ one gets $C_{\delta} \geq \lambda_{*} \delta I_{d}$. Moreover, if $\tau_{\varepsilon}^{\phi}(X)>T$ then for $0<\delta<T$

$$
\begin{aligned}
\left|X_{T-\delta}-x\right| & =\left|X_{T-\delta}-x_{T}(\phi)\right| \leq\left|X_{T-\delta}-x_{T-\delta}(\phi)\right|+\left|x_{T-\delta}(\phi)-x_{T}(\phi)\right| \\
& <\varepsilon+\int_{T-\delta}^{T}\left|\partial_{t} x_{t}(\phi)\right| d t .
\end{aligned}
$$

 $a_{d} e^{-(2 \varepsilon)^{2}}$. Therefore, $\left\{\tau_{\varepsilon}^{\phi}(X)>T\right\} \subset \Gamma_{\delta, 2 \varepsilon}(x)$ and by using Lemma $\frac{1}{3} .2$ emanepos get

$$
p_{X_{T}}(x) \geq \frac{1}{2\left(2 \pi \lambda_{*} \delta\right)^{d / 2} e^{4 \varepsilon^{2}}} \mathbb{P}\left(\tau_{\varepsilon}^{\phi}(X)>T\right) \equiv \Upsilon \times \mathbb{P}\left(\tau_{\varepsilon}^{\phi}(X)>T\right)
$$

Now, the hypothesis allow one to use Theorem 1 in Bally, Fernández and Meda $\frac{\square \mathrm{bfm}}{6 \mathrm{f}}$: one has

$$
\mathbb{P}\left(\tau_{\varepsilon}^{\phi}(X)>T\right) \geq \exp \left(-Q\left(\Psi+\frac{1}{\lambda_{*}} \int_{0}^{T}\left|\partial_{t} x_{t}(\phi)\right| d t\right)\right)
$$

and the statement holds.
grushin Example 4.2. Let $n \geq 1$ and $k \geq 0$ be fixed integers and let (X, Y) be the 2dimensional process solution to

$$
\begin{aligned}
& X_{t}=x_{0}+\int_{0}^{t} Y_{s}^{n} d W_{s}^{1}+\int_{0}^{t} Y_{s}^{k} d s \\
& Y_{t}=y_{0}+W_{t}^{2}
\end{aligned}
$$

W denoting a Brownian motion on \mathbb{R}^{2}. The pair (X, Y) then follows the well-known Grushin diffusion. Here, we are interested in the study of the component $X_{\text {th }}$ only, because this gives an example in between the two cases studied in Theorem $\frac{\text { th.1. In }}{4}$.1 fact, one has $\sigma \sigma^{*}(x, y)=y^{2 n}$, and this vanishes as $y=0$, so there is no hope that part ii) holds. Nevertheless, i) is always true. In fact, since the strong Hörmander condition holds for the diffusion pair (X, Y), the law of $\left(X_{T}, Y_{T}\right)$ has a smooth density on \mathbb{R}^{2}, so that X_{T} has a smooth density as well. Moreover, the associated skeleton is given by

$$
\begin{aligned}
& x_{t}(\phi)=x_{0}+\int_{0}^{t} y_{t}^{n}(\phi) \phi_{t}^{1} d t+\frac{1}{2} \int_{0}^{t}\left(2 y_{t}^{k}(\phi)-n y_{t}^{2 n-1}(\phi)\right) d t \\
& y_{t}(\phi)=y_{0}+\int_{0}^{t} \phi_{t}^{2} d t
\end{aligned}
$$

so it is clear that for every $x \in \mathbb{R}$ one has $\mathcal{C}(x) \neq \emptyset$ and one can choose $\phi \in \mathcal{C}(x)$ such that $\sigma \sigma^{*}\left(x, y_{T}(\phi)\right)>0$, that gives $p_{X_{T}}(x)>0$.

We propose now a sufficient condition for the existence of a local density, that in particular says that under the hypothesis of $i i$) in Theorem $\frac{\text { th-1.to }}{4.1, ~ a ~ l o c a l ~ d e n s i t y ~ r e a l l y ~}$ exists.
prop-ito Proposition 4.3. Set

$$
\mathcal{O}=\left\{x \in \mathbb{R}^{d}: \mathbb{P}\left(\sigma \sigma^{*}\left(x, Y_{T}\right)>0\right)=1\right\}
$$

Then for every $x \in \mathcal{O}$ the law of X_{T} admits a local density $p_{X_{T}}$ around x. As a consequence, if $x \in \mathcal{O}$ is such that $\mathcal{C}(x) \neq \emptyset$ and for some $\phi \in \mathcal{C}(x)$ one has $\sigma \sigma^{*}\left(x, y_{T}(\phi)\right)>0$, then the local density $p_{X_{T}}$ is a.e. strictly positive around x.
Proof. For $x \in \mathcal{O}$, set $D_{x}=\left\{y \in \mathbb{R}^{n}: \sigma \sigma^{*}(x, y)>0\right\} . D_{x}$ is an open set, so there exist a sequence $\left\{y_{i}\right\} \subset \mathbb{R}^{n}$ and a sequence $\left\{r_{i}\right\}_{i} \subset \mathbb{R}_{+}$such that $D_{x}=\cup_{i \in \mathbb{N}} B_{\frac{1}{2} r_{i}}\left(y_{i}\right)$ and $B_{r_{i}}\left(y_{i}\right) \subset D_{x}$. Moreover $\sigma \sigma^{*}(\bar{x}, y) \geq \lambda_{i}>0$ for every $y \in B_{\gamma_{i}}\left(y_{i}\right)$, and $\bar{x} \in B_{r}(x)$. For any fixed i, we consider a localizing r.v. U_{i} of the form (2.20): we set

$$
U_{i}=\psi_{r^{2}}\left(\left|X_{T}-x\right|^{2}\right) \psi_{r_{i}^{2}}\left(\left|Y_{T}-y_{i}\right|^{2}\right)
$$

By $\left(\frac{\mathrm{Mal111}}{2.21),} U_{i}\right.$ is a good localizing r.v. (that is, $\left(\frac{\mathrm{Mal11}}{2.1)}\right.$ holds), and we set $d \mathbb{P}_{i}=U_{i} d \mathbb{P}$. We also notice that if $U_{i} \neq 0$ then $\sigma \sigma^{*}\left(X_{T}, Y_{T}\right) \geq \lambda_{i}>0$. This property allows one to use a standard argument showing that the Malliavin covariance matrix of $F=X_{\mathcal{T}_{W}}$ has finite inverse moments of any order with respect to \mathbb{P}_{i}, which means that ($\overline{2} .3)$ holds. So, we can use Lemma $\overline{2} .1$ and we can conclude that the law of X_{T} with respect to \mathbb{P}_{i} is absolutely continuous with respect to the Lebesgue measure. Take now $A \subset B_{r / 2}(x)$ a set of Lebesgue measure equal to zero. Since $x \in \mathcal{O}$ we have $\mathbb{P}\left(Y_{T} \in D_{x}\right)=1$ so

$$
\begin{aligned}
\mathbb{P}\left(X_{T} \in A\right) & =\mathbb{P}\left(X_{T} \in A, Y_{T} \in D_{x}\right) \leq \sum_{i} \mathbb{P}\left(X_{T} \in A, Y_{T} \in B_{\frac{1}{2} r_{i}}\left(y_{i}\right)\right) \\
& =\sum_{i} \mathbb{P}_{i}\left(X_{T} \in A, Y_{T} \in B_{\frac{1}{2} r_{i}}\left(y_{i}\right)\right)
\end{aligned}
$$

the last equality being true because $\psi_{r^{2}}\left(\left|X_{T}-x\right|^{2}\right) \psi_{r_{i}^{2}}\left(\left|Y_{T}-y_{i}\right|^{2}\right)=1$ if $X_{T} \in A$ and $Y_{T} \in B_{\frac{1}{2} r_{i}}\left(y_{i}\right)$. Since the law of X_{T} under \mathbb{P}_{i} is absolutely continuous with respect to the Lebesgue measure we obtain $\mathbb{P}_{i}\left(X_{T} \in A, Y_{T} \in B_{\frac{1}{2} r_{i}}\left(y_{i}\right)\right)=0$ for every i, and this proves that a local density $p_{x_{0}}$ around x exists. The final statement comes now immediately from Theorem th.1. \square

Example 4.4. Consider the diffusion process

$$
\begin{aligned}
& X_{t}^{1}=x_{0}^{1}+\int_{0}^{t} \alpha\left(\left|X_{s}\right|\right)\left|Y_{s}\right| \circ d W_{s}^{1}+\int_{0}^{t}\left|X_{s}\right| \circ d W_{s}^{3} \\
& X_{t}^{2}=x_{0}^{2}+\int_{0}^{t} \alpha\left(\left|X_{s}\right|\right)\left|Y_{s}\right| \circ d W_{s}^{2}+\int_{0}^{t}\left|X_{s}\right| \circ d W_{s}^{3} \\
& d Y_{t}=y_{0}+\int_{0}^{t} \beta\left(X_{s}\right) \circ d W_{t}^{4}
\end{aligned}
$$

where W is a standard Brownian motion taking values on \mathbb{R}^{4} and α, β are C_{b}^{4} functions. We suppose that $\{r: \alpha(r) \neq 0\}=B_{1}(0)$ and that $\beta\left(x_{0}\right) \neq 0$, the latter requirement ensuring in particular that the law of Y_{T} has a density. Therefore, for every $x \in B_{1}(0)$ one has $\mathbb{P}\left(\sigma \sigma^{*}\left(x, Y_{T}\right)>0\right)=1$ and by applying Proposition $\frac{\text { prop-ito }}{4.3}$ one gets that X_{T} has a local density around every point in $B_{1}(0)$. Now, in order to study its positivity property, let us write down the associated skeleton: for a square integrable control path ϕ, one has

$$
\begin{aligned}
x_{t}^{1}(\phi) & =x_{0}^{1}+\int_{0}^{t} \alpha\left(\left|x_{s}(\phi)\right|\right)\left|y_{t}(\phi)\right| \phi_{s}^{1} d s+\int_{0}^{t}\left|x_{s}(\phi)\right| \phi_{s}^{3} d s \\
x_{t}^{2}(\phi) & =x_{0}^{2}+\int_{0}^{t} \alpha\left(\left|x_{s}(\phi)\right|\right)\left|y_{t}(\phi)\right| \phi_{s}^{2} d s+\int_{0}^{t}\left|x_{s}(\phi)\right| \phi_{s}^{3} d s \\
y_{t}(\phi) & \left.=y_{0}+\int_{0}^{t} \beta\left(x_{s}(\phi)\right)\right) \phi_{s}^{4} d s .
\end{aligned}
$$

We recall that the support theorem of Stroock and Varadhan asserts that the law of $\left(X_{t}^{1}, X_{t}^{2}, Y_{t}\right)_{t \geq 0}$ is the closure (with respect to the uniform norm) of the points of the skeleton as above. Notice that if $\left|x_{t}^{1}(\phi)\right| \geq 1$ then $\alpha\left(\left|x_{t}(\phi)\right|\right)=0$ and so $\partial_{t} x_{t}^{1}(\phi)=\left|x_{t}(\phi)\right| \phi_{t}^{3}=\partial_{t} x_{t}^{2}(\phi)$. This means that outside the unit ball the skeleton $\left(x_{t}^{1}(\phi), x_{t}^{2}(\phi)\right)$ may travel on a line which is parallel to the principal diagonal (i.e. $x^{1}=x^{2}$), but only on this line. If $\left|x_{t}^{1}(\phi)\right|<1$ then one may use the controls ϕ^{1} and ϕ^{2} and then $\left(x_{t}^{1}(\phi), x_{t}^{2}(\phi)\right)$ may travel in any direction inside the open unit ball. Having this in mind, we define the strip $S=\left\{\left(x^{1}, x^{2}\right):\left|x^{1}-x^{2}\right|<\sqrt{2}\right\}$ and thanks to the above discussion and the support theorem we have the following three cases.

1. $x_{0} \notin S$. Here, for every s the law of X_{s} is concentrated on the line which is parallel to the principal diagonal and contains x_{0}. In particular, $\alpha\left(\left|X_{s}\right|\right)=0$ a.s. for every s, so X is actually a diffusion process satisfying

$$
X_{t}^{1}=x_{0}^{1}+\int_{0}^{t}\left|X_{s}\right| \circ d W_{s}^{3}, \quad X_{t}^{2}=x_{0}^{2}+\int_{0}^{t}\left|X_{s}\right| \circ d W_{s}^{3}
$$

2. $x_{0} \in S$ but $x_{0} \notin B_{1}(0) \begin{gathered}\text { prop-1to }\end{gathered}$ He support of the law of X_{T} is the whole S.
 point in $B_{1}(0)$ and moreover, there exists a version of the local density which is strictly positive in the ball. But we have no information outside the ball.
3. $x_{0} \in B_{1}(0)$. We can assert the same statements as in case 2 but with some refinements. In fact, here if $y_{0} \neq 0$ then $\alpha\left(x_{0}\right) y_{0} \neq 0$, so that the law of X_{T} has a smooth global density which is strictly positive on the unit ball $B_{1}(0)$.
Concerning point ii) of Theorem $\frac{\text { th-ito }}{4.1, \text { it }}$ does not apply except when $x_{0}, x \in B_{1}(0)$.

4.2 Diffusion processes satisfying a weak Hörmander condition: an example

In this section we treat an example of diffusion process which satisfies the weak Hörmander condition and has been recently studied in Bally and Kohatsu-Higa [5] (we are going to use the ideas and the estimates from that paper). Since lower bounds for the density have been already discussed in $\left[\begin{array}{l}\text { pis: } \\ 5 \text {, we deal } h_{\text {there }} \text { oros }\end{array}\right.$ the strict positivity. So, we give an application of our Theorem 3.3 in a case of degenerate diffusion coefficients.
We consider the diffusion process

$$
\begin{equation*}
X_{t}^{1}=x^{1}+\int_{0}^{t} \sigma_{1}\left(X_{s}\right) d W_{s}+\int_{0}^{t} b_{1}\left(X_{s}\right) d s, \quad X_{t}^{2}=x^{2}+\int_{0}^{t} b_{2}\left(X_{s}\right) d s \tag{4.6}
\end{equation*}
$$

and we assume that $\sigma_{1}, b_{1}, b_{2} \in C_{b}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$. Actually, it suffices that they are four times differentiable - but we do not focus on this aspect here. Moreover, we fix some point $y \in \mathbb{R}^{2}$ and we assume that

$$
\begin{equation*}
\left|\sigma_{1}(y)\right|>c_{*}>0 \quad \text { and } \quad\left|\partial_{1} b_{2}(y)\right|>c_{*}>0 . \tag{4.7}
\end{equation*}
$$

Let $\sigma=\left(\sigma_{1}, 0\right)^{*}$ and $b=\left(b_{1}, b_{2}\right)^{*}$. The Lie bracket $[\sigma, b]$ is computed as

$$
[\sigma, b](x)=\partial_{\sigma} b(x)-\partial_{b} \sigma(x)=\binom{\sigma_{1}(x) \partial_{1} b_{1}(x)-b_{1}(x) \partial_{1} \sigma_{1}(x)-b_{2}(x) \partial_{2} \sigma_{1}(x)}{\sigma_{1}(x) \partial_{1} b_{2}(x)} .
$$

So assumption (${ }^{\frac{H 2}{4} 2} 7$) is equivalent with the fact that $\sigma(y)$ and $[\sigma, b](y)$ span \mathbb{R}^{2}, and this is the weak Hörmander condition in y.
We set $\bar{b}=b-\frac{1}{2} \partial_{\sigma} \sigma$ and for a measurable function $\phi \in L^{2}([0, T], \mathbb{R})$ we consider the skeleton $x(\phi)$, i.e. the solution of the equation

$$
x_{t}(\phi)=x+\int_{0}^{t}\left(\sigma\left(x_{s}(\phi)\right) \phi_{s}+\bar{b}\left(x_{s}(\phi)\right)\right) d s .
$$

hor-prop Proposition 4.5. Assume that $\sigma_{1}, b_{1}, b_{2} \in C_{b}^{\infty}\left(\mathbb{R}^{2}\right)$ and $\stackrel{\text { 装2 }}{4}$ r) holds. Then the law of X_{T} has a local smooth density $p_{T}(x, \cdot)$ in a neighborhood of y. Moreover, if there exists a control $\phi \in L^{2}([0, T])$ such that $x_{T}(\phi)=y$ then $p_{T}(x, y)>0$.
Before starting with the proof of Proposition hor-prop $\frac{\text { het }}{4.5 \text { Iet } u s \text { consider the following de- }}$ composition: for $\delta \in(0, T]$, we set

$$
\begin{equation*}
F=X_{T}-x_{T}(\phi) \quad \text { and } \quad F=F_{T-\delta}+G_{\delta}+R_{\delta} \tag{4.8}
\end{equation*}
$$

where $F_{T-\delta}=X_{T-\delta}-x_{T-\delta}(\phi)$ and

$$
\begin{aligned}
G_{\delta}^{1}= & \int_{T-\delta}^{T} \sigma_{1}\left(X_{T-\delta}\right) d W_{s}, \quad G_{\delta}^{2}=\int_{T-\delta}^{T} \partial_{\sigma} b_{2}\left(X_{T-\delta}\right)(T-s) d W_{s} \\
R_{\delta}^{1}= & \int_{T-\delta}^{T}\left(\sigma_{1}\left(X_{s}\right)-\sigma_{1}\left(X_{T-\delta}\right)\right) d W_{s}+\int_{T-\delta}^{T} b_{1}\left(X_{s}\right) d s+ \\
& -\int_{T-\delta}^{T}\left(\sigma_{1}\left(x_{s}(\phi)\right) \phi_{s}+\bar{b}_{1}\left(x_{T-\delta}(\phi)\right)\right) d s \\
R_{\delta}^{2}= & \int_{T-\delta}^{T}\left(\partial_{\sigma} b_{2}\left(X_{s}\right)-\partial_{\sigma} b_{2}\left(X_{T-\delta}\right)\right)(T-s) d W_{s}+\delta\left(b_{2}\left(X_{T-\delta}\right)-b_{2}\left(x_{T-\delta}(\phi)\right)\right)+ \\
& +\int_{T-\delta}^{T} L b_{2}\left(X_{s}\right)(T-s) d s-\int_{T-\delta}^{T}\left(b_{2}\left(x_{s}(\phi)\right)-b_{2}\left(x_{T-\delta}(\phi)\right)\right) d s
\end{aligned}
$$

in which $L=\frac{1}{2} \sigma \sigma^{*} \partial_{x}^{2}+b \partial_{x}$ denotes the infinitesimal generator of X.
The covariance matrix of the conditional (on $\mathcal{F}_{T-\delta}$) Gaussian r.v. G_{δ} is given by

$$
C_{\delta}=\delta \sigma_{1}^{2}\left(X_{T-\delta}\right)\left(\begin{array}{cc}
1 & \partial_{1} b_{2}\left(X_{T-\delta}\right) \frac{\delta}{2} \\
\partial_{1} b_{2}\left(X_{T-\delta}\right) \frac{\delta}{2} & \left(\partial_{1} b_{2}\right)^{2}\left(X_{T-\delta}\right) \frac{\delta^{2}}{3}
\end{array}\right) .
$$

We need now some estimates which can be easily deduced from $\frac{\text { bib: } 5] \text {. }[\mathrm{B} . \text { KH } \text { order to be }}{}$ self contained, we propose here the following
hor-lemma Lemma 4.6. Let $\rho_{\delta}^{2}=\max \left(\delta, \int_{T-\delta}^{T}\left|\phi_{s}\right|^{2} d s\right)$. Then, there exist $\delta_{0}>0$ such that for every $\delta<\delta_{0}$, on the set $\left\{\left|F_{T-\delta}\right|<\delta^{3 / 2} \rho_{\delta}\right\}$ the following properties hold:
i) $\operatorname{det} C_{\delta} \geq c_{1} \frac{\delta^{4}}{12}$;
ii) for every $\xi \in \mathbb{R}^{2},|\xi|_{\delta}^{2} \leq \frac{c_{2}}{\delta^{3}}\left(\delta^{2}\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}\right)$; in particular, $\left|F_{T-\delta}\right|_{\delta} \leq c_{2} \rho_{\delta}$;
ii) for every $q \geq 2, \theta_{\delta, q} \leq L_{q} \rho_{\delta}$.

Here, c_{1}, c_{2} and L_{q} are suitable positive constants depending on c_{*} and upper bounds for σ, b and their derivatives up to order $4, L_{q}$ depending on q also, and we recall that $|\xi|_{\delta}=\left|C_{\delta}^{-1 / 2} \xi\right|$.

Proof. First, by recalling that σ and b are bounded, for some positive constant C we have

$$
\left|x_{T-\delta}(\phi)-x_{T}(\phi)\right| \leq C \rho_{\delta}^{2}
$$

so that

$$
\left|X_{T-\delta}-y\right| \leq\left|X_{T-\delta}-x_{T-\delta}(\phi)\right|+C \rho_{\delta}^{2}
$$

Therefore, we can choose δ_{0} such that for all $\delta<\delta_{0}$ the following holds: if $\left|F_{T-\delta}\right|=$ $\left|X_{T-\delta}-x_{T-\delta}(\phi)\right|<\delta^{3 / 2} \rho_{\delta}$ then

$$
\left|\sigma_{1}\left(X_{T-\delta}\right)\right| \geq c_{*}>0 \quad \text { and } \quad\left|\partial_{1} b_{2}\left(X_{T-\delta}\right)\right| \geq c_{*}>0
$$

Therefore,

$$
\operatorname{det} C_{\delta}=\frac{\left(\sigma_{1}^{2} \partial_{1} b_{2}\right)^{2}\left(X_{T-\delta}\right) \delta^{4}}{12} \geq c_{1} \delta^{4}
$$

and i) holds. Moreover, we have

$$
C_{\delta}^{-1}=\frac{1}{\left(\sigma_{1} \partial_{1} b_{2}\right)^{2}\left(X_{T-\delta}\right) \delta^{3}}\left(\begin{array}{cc}
4\left(\partial_{1} b_{2}\right)^{2}\left(X_{T-\delta}\right) \delta^{2} & -6\left(\partial_{1} b_{2}\right)\left(X_{T-\delta}\right) \delta \\
-6\left(\partial_{1} b_{2}\right)\left(X_{T-\delta}\right) \delta & 12
\end{array}\right)
$$

so that for $\xi \in \mathbb{R}^{2}$,

$$
\begin{aligned}
\left|C_{\delta}^{-1 / 2} \xi\right|^{2} & =\left\langle C_{\delta}^{-1} \xi, \xi\right\rangle=\frac{1}{\left(\sigma_{1} \partial_{1} b_{2}\right)^{2}\left(X_{T-\delta}\right) \delta^{3}}\left(\left(2 \partial_{1} b_{2}\left(X_{T-\delta}\right) \delta \xi_{1}-3 \xi_{2}\right)^{2}+3 \xi_{2}^{2}\right) \\
& \leq \frac{C}{c_{*}^{4} \delta^{3}}\left(\delta^{2}\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}\right)
\end{aligned}
$$

where C depends on σ and b. Then, if $\left|F_{T-\delta}\right|<\delta^{3 / 2} \rho_{\delta}$ one gets

$$
\left|F_{T-\delta}\right|_{\delta}^{2}=\left|C_{\delta}^{-1 / 2} F_{T-\delta}\right|^{2} \leq \frac{C}{c_{*}^{4} \delta^{3}} \delta^{3} \rho_{\delta}^{2}\left(\delta^{2}+1\right) \leq c_{2} \rho_{\delta}^{2}
$$

and $i i$) is proved. As for $i i i$), for $q \geq 2$ we have

$$
\mathbb{E}\left(\left|C_{\delta}^{-1 / 2} R_{\delta}\right|^{q}\right) \leq \Lambda_{q}\left(\mathbb{E}\left(\left|\delta^{-1 / 2} R_{\delta}^{1}\right|^{q}\right)+\mathbb{E}\left(\left|\delta^{-3 / 2} R_{\delta}^{2}\right|^{q}\right)\right)
$$

where Λ_{q} depends on q, c_{*}, σ and b. Now, by using the Burkholder inequality and the boundedness of the coefficients b and σ and of their derivatives, one has

$$
\begin{aligned}
& \mathbb{E}\left(\left|\delta^{-1 / 2} R_{\delta}^{1}\right|^{q}\right) \leq C_{q} \delta^{-q / 2}[\mathbb{E}(\left.\left|\int_{T-\delta}^{T}\left(\sigma_{1}\left(X_{s}\right)-\sigma_{1}\left(X_{T-\delta}\right)\right) d W_{s}\right|^{q}\right)+ \\
&+\mathbb{E}\left(\left|\int_{T-\delta}^{T} b_{1}\left(X_{s}\right) d s\right|^{q}\right)+ \\
&\left.+\mathbb{E}\left(\left|\int_{T-\delta}^{T}\left(\sigma_{1}\left(x_{s}(\phi)\right) \phi_{s}+\bar{b}_{1}\left(x_{T-\delta}(\phi)\right)\right) d s\right|^{q}\right)\right] \\
& \leq C_{q} C \delta^{-q / 2} \cdot\left(\delta^{q}+\delta^{q / 2}\left(\int_{T-\delta}^{T}\left|\phi_{s}\right|^{2} d s\right)^{q / 2}\right) \leq 2 C_{q} C \rho_{\delta}^{q}
\end{aligned}
$$

where C_{q} depends on q only and C depends on the bounds of the diffusion coefficients. Similarly (in the following C denotes a suitable constant),

$$
\begin{aligned}
& \mathbb{E}\left(\left|\delta^{-3 / 2} R_{\delta}^{2}\right|^{q}\right) \leq C_{q} \delta^{-3 q / 2}\left[\mathbb{E}\left(\left|\int_{T-\delta}^{T}\left(\partial_{\sigma} b_{2}\left(X_{s}\right)-\partial_{\sigma} b_{2}\left(X_{T-\delta}\right)\right)(T-s) d W_{s}\right|^{q}\right)+\right. \\
&+\mathbb{E}\left(\delta^{q}\left|b_{2}\left(X_{T-\delta}\right)-b_{2}\left(x_{T-\delta}(\phi)\right)\right|^{q}\right)+ \\
&+\mathbb{E}\left(\left|\int_{T-\delta}^{T} L b_{2}\left(X_{s}\right)(T-s) d s\right|^{q}\right)+ \\
&\left.+\left|\int_{T-\delta}^{T}\left(b_{2}\left(x_{s}(\phi)\right)-b_{2}\left(x_{T-\delta}(\phi)\right)\right) d s\right|^{q}\right] \\
& \leq 2 C_{q} C \delta^{-3 q / 2}\left(\delta^{2 q}+\delta^{q}\left|F_{T-\delta}\right|^{q}+\delta^{q} \sup _{T-\delta \leq s \leq T}\left|x_{s}(\phi)-x_{T-\delta}(\phi)\right|^{q}\right) \\
& \leq 2 C_{q} C \delta^{-3 q / 2}\left(\delta^{2 q}+\delta^{q} \cdot \delta^{3 q / 2} \rho_{\delta}^{q}+\delta^{q} \cdot\left[\delta^{q}+\delta^{q / 2} \cdot\left(\int_{T-\delta}^{T}\left|\phi_{s}\right|^{2} d s\right)^{q / 2}\right]\right) \\
& \leq C_{q} C \rho_{\delta}^{q} .
\end{aligned}
$$

The same arguments may be used to give upper estimates for the remaining terms in $\left\|C_{\delta}^{-1 / 2} R_{\delta}\right\|_{\delta, 2, q}^{q}$ that contain the Malliavin derivatives. So, we deduce that

$$
\left\|C_{\delta}^{-1 / 2} R_{\delta}\right\|_{\delta, 2, q} \leq L_{q} \rho_{\delta}
$$

and the proof is completed.
We are now ready for the
Proof of Proposition $\frac{\text { hor-prop }}{4.5 .-1}$ Consider the decomposition $\left(\frac{\text { hor-dec }}{4.8): \text { we have }} p_{X_{T}}(y)=\right.$
 $\delta<\delta_{0}$ if $\left|F_{T-\delta}\right|<\delta^{3 / 2} \rho_{\delta}$ then $\left|F_{T-\delta}\right|_{\delta}<c_{2} \rho_{\delta}$. We take now $\delta_{1}<\delta_{0}$ and $r=c_{2} \rho_{\delta_{1}}$. $\underset{\sim}{\text { So, }}$, there exists $\delta<\delta_{1}$ such that $\theta_{\delta, q_{d}}=\left\|C_{\delta}^{-1 / 2} R_{\delta}\right\|_{\delta, 2, q_{d}} \leq a_{d} e^{-r^{2}}$. Therefore, $\widetilde{\Gamma}_{\delta, r}(0) \supset\left\{\left|F_{T-\delta}\right|<\delta^{3 / 2} \rho_{\delta}\right\}$ and by the support theorem one has $\mathbb{P}\left(\left|F_{T-\delta}\right|<\right.$ $\left.\delta^{3 / 2} \rho_{\delta}\right)=\mathbb{P}\left(\left|X_{T-\delta}-x_{T-\delta}(\phi)\right|<\delta^{3 / 2} \rho_{\delta}\right)>0$, so Theorem 3.3 allows one to conclude.

References

ib:[A.K.S] [1] S. Aida, S. Kusuoka, D. Stroock (1993). On the support of Wiener functionals. Asymptotic problems in probability theory: Wiener functionals and asymptotics (Sanda/Kyoto, 1990), 3-34, Pitman Res. Notes Math. Ser., 284, Longman Sci. Tech., Harlow.
bib:bally [2] V. Bally (2006). Lower bounds for the density of locally elliptic Itô processes. Ann. Probab., 34, 2406-2440.
bib:[B.C] [3] V. Bally, L. Caramellino (2011). Riesz transform and integration by parts formulas for random variables. Stochastic Process. Appl., 121, 1332-1355.
bib:tubes
bib: [B.KH]
bfm [6] V. Bally, B. Fernández, A. Meda (2011). Estimates for the probability that Itô processes remain near a path. Stochastic Process. Appl., 121, 20872113.
bib:[B.P] [7] V. Bally, E. Pardoux (1998). Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal., 9, 27-64.
[8] G. Ben Arous, R. Léandre (1991). Décroissance exponentielle du noyau de la chaleur sur la diagonale. II. Probab. Theory Related Fields, 90, 377-402.
bib: [D.N]
bib: [F] [10] N. Fournier (2001). Strict positivity of the solution to a 2-dimensional spatially homogeneous Boltzmann equation without cutoff. Ann. Inst. H. Poincaré Probab. Statist. 37, 481-502.
bib: [H.S] [11] F. Hirsch, S. Song (1997). Criteria of positivity for the density of the law of a Wiener functional. Bull. Sci. Math., 121, 261-273.
bib:[K-H] [12] A. Kohatsu-Higa (2003). Lower bounds for densities of uniformly elliptic random variables on Wiener space. Probab. Theory Related Fields, 126, 421457.
bib: [KS3] [13] S. Kusuoka, D. Stroock (1987). Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34, 391-442.
ib: [L2005] [14] R. LÉANDRE (2005). Positivity theorem for a general manifold. SORT, 29, 11-25.
bib: [M] [15] P. Malliavin (1997). Stochastic Analysis. Springer.
bib: [M.T] [16] P. Malliavin, A. Thalmaier (2006). Stochastic calculus of variations in mathematical finance. Springer-Verlag, Berlin.
ib: [M.SS1] [17] A. Millet, M. SANZ-Solé (1994) A simple proof of the support theorem for diffusion processes. Séminaire de Probabilités, XXVIII, Lecture Notes in Math., 1583, Springer, Berlin, 36-48.
ib:[M.SS2] [18] A. Millet, M. Sanz-Solé (1997). Points of positive density for the solution to a hyperbolic SPDE. Potential Anal. 7, 623-659.
bib: [N] [19] D. Nualart (2006) The Malliavin calculus and related topics. Second Edition. Springer-Verlag.
bib:EN [20] E. Nualart (2012). On the density of systems of nonlinear spatially homogeneous SPDEs. Stochastics, to appear; arXiv:0908.4587v2.
bib:EN2 [21] E. Nualart, L. Quer-Sardanyons (2012). Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension. Stochastic Process. Appl., 122, 418-447.
bib:S [22] I. Shigekawa (2004). Stochastic analysis. In: Translations of Mathematical Monographs, in: Iwanami Series in Modern Mathematics, vol. 224, American Mathematical Society, Providence.

[^0]: *Laboratoire d'Analyse et de Mathématiques Appliquées, UMR 8050, Université Paris-Est Marne-la-Vallée, 5 Bld Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France. Email: bally@univ-mlv.fr
 ${ }^{\dagger}$ Dipartimento di Matematica, Università di Roma - Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy. Email: caramell@mat.uniroma2.it

