99 research outputs found

    Large-Scale Mass Spectrometry Imaging Investigation of Consequences of Cortical Spreading Depression in a Transgenic Mouse Model of Migraine

    Get PDF
    Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant (t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13361-015-1136-8) contains supplementary material, which is available to authorized users

    MALDI imaging mass spectrometry for direct tissue analysis: Technological advancements and recent applications.

    No full text
    Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a method that allows the investigation of the molecular content of tissues within its morphological context. Since it is able to measure the distribution of hundreds of analytes at once, while being label free, this method has great potential which has been increasingly recognized in the field of tissue-based research. In the last few years, MALDI-IMS has been successfully used for the molecular assessment of tissue samples mainly in biomedical research and also in other scientific fields. The present article will give an update on the application of MALDI-IMS in clinical and preclinical research. It will also give an overview of the multitude of technical advancements of this method in recent years. This includes developments in instrumentation, sample preparation, computational data analysis and protein identification. It will also highlight a number of emerging fields for application of MALDI-IMS like drug imaging where MALDI-IMS is used for studying the spatial distribution of drugs in tissues

    Multilabel Per-Pixel Quantitation in Mass Spectrometry Imaging

    No full text
    In quantitative mass spectrometry imaging (MSI), the gold standard adds a single structural homologue of the target compound at a known concentration to the sample. This internal standard enables to map the detected intensity of the target molecule against an external calibration curve. This approach, however, ignores local noise levels and disproportional ion suppression effects, which might depend on the concentration of the target compound. To overcome these issues, we propose a novel approach that applies several isotopically labeled versions, each at a different concentration, to the sample. This allows creating individual internal calibration curves for every MSI pixel. As proof of principle, we have quantified an endogenous peptide of histone H4 by matrix-assisted laser desorption/ionization-Q-MSI (MALDI-Q-MSI), using a mixture of three isotopically labeled versions. The usage of a fourth label allowed us to compare the gold standard to our multilabel approach. We observed substantial heterogeneity in ion suppression across the tissue, which disclosed itself as varying slopes in the per-pixel regression analyses. These slopes were histology-dependent and differed from each other by up to a factor of 4. The results were validated by liquid chromatography–mass spectrometry (LC-MS), exhibiting a high agreement between LC-MS and MALDI-Q-MSI (Pearson correlation r = 0.87). A comparison between the multilabel and single-label approaches revealed a higher accuracy for the multilabel method when the local target compound concentration differed too much from the concentration of the single label. In conclusion, we show that the multilabel approach provides superior quantitation compared to a single-label approach, in case the target compound is inhomogeneously distributed at a wide concentration range in the tissue

    Experimental and Data Analysis Considerations for Three-Dimensional Mass Spectrometry Imaging in Biomedical Research

    No full text
    Mass spectrometry imaging (MSI) enables the visualization of molecular distributions on complex surfaces. It has been extensively used in the field of biomedical research to investigate healthy and diseased tissues. Most of the MSI studies are conducted in a 2D fashion where only a single slice of the full sample volume is investigated. However, biological processes occur within a tissue volume and would ideally be investigated as a whole to gain a more comprehensive understanding of the spatial and molecular complexity of biological samples such as tissues and cells. Mass spectrometry imaging has therefore been expanded to the 3D realm whereby molecular distributions within a 3D sample can be visualized. The benefit of investigating volumetric data has led to a quick rise in the application of single-sample 3D-MSI investigations. Several experimental and data analysis aspects need to be considered to perform successful 3D-MSI studies. In this review, we discuss these aspects as well as ongoing developments that enable 3D-MSI to be routinely applied to multi-sample studies

    Comprehensive identification of proteins from MALDI imaging.

    No full text
    MALDI imaging mass spectrometry (MALDI IMS) is a powerful tool for the visualization of proteins in tissues and has demonstrated considerable diagnostic and prognostic value. One main challenge is that the molecular identity of such potential biomarkers mostly remains unknown. We introduce a generic method that removes this issue by systematically identifying the proteins embedded in the MALDI matrix using a combination of bottom-up and top-down proteomics. The analyses of ten human tissues lead to the identification of 1,400 abundant and soluble proteins constituting the set of proteins detectable by MALDI IMS including &gt;90% of all IMS biomarkers reported in the literature. Top-down analysis of the matrix proteome identified 124 mostly N- and C-terminally fragmented proteins indicating considerable protein processing activity in tissues. All protein identification data from this study as well as the IMS literature has been deposited into MaTisse, a new publically available database which we anticipate will become a valuable resource for the IMS community
    • …
    corecore