7 research outputs found

    Numerical modelling of medium-speed impacts on a granular surface in a low-gravity environment application to Hayabusa2 sampling mechanism

    No full text
    International audienceEven if craters are very common on Solar System body surfaces, crater formation in granular media such as the ones covering most of visited asteroids still needs to be better understood, above all in low-gravity environments. JAXA's sample return mission Hayabusa2, currently visiting asteroid (162173) Ryugu, is a perfect opportunity for studying medium-speed impacts into granular matter, since its sampling mechanism partly consists of a 300 m s −1 impact. In this paper, we look at medium-speed impacts, from 50 to 300 m s −1 , into a granular material bed, to better understand crater formation and ejecta characteristics. We then consider the sampler horn of Hayabusa2 sampling mechanism and monitor the distribution of particles inside the horn. We find that the cratering process is much longer under low gravity, and that the crater formation mechanism does not seem to depend on the impact speed, in the considered range. The Z-model seems to rightly represent our velocity field for a steady excavation state. From the impact, less than 10% is transmitted into the target, and grains are ejected mostly with angles between 48 ‱ and 54 ‱. Concerning the sampling mechanism, we find that for most of the simulations, the science goal of 100 mg is fulfilled, and that a second impact increases the number of ejecta but not necessarily the number of collected particles

    Exogenic basalt on asteroid (101955) Bennu

    No full text
    International audienceWhen rubble-pile asteroid 2008 TC3 impacted Earth on October 7, 2008, the recovered rockfragments indicated that such asteroids can contain exogenic material [1,2]. However,spacecraft missions to date have only observed exogenous contamination on large,monolithic asteroids that are impervious to collisional disruption [3, 4]. Here we report thepresence of meter-scale exogenic boulders on the surface of near-Earth asteroid (101955)Bennu—the 0.5-km, rubble-pile target of the OSIRIS-REx mission [5] which has beenspectroscopically linked to the CM carbonaceous chondrite meteorites [6]. Hyperspectraldata indicate that the exogenic boulders have the same distinctive pyroxene composition asthe howardite–eucrite–diogenite (HED) meteorites that come from (4) Vesta, a 525-km-diameter asteroid that has undergone differentiation and extensive igneous processing [7,8, 9]. Delivery scenarios include the infall of Vesta fragments directly onto Bennu orindirectly onto Bennu’s parent body, where the latter’s disruption created Bennu from amixture of endogenous and exogenic debris. Our findings demonstrate that rubble-pileasteroids can preserve evidence of inter-asteroid mixing that took place at macroscopicscales well after planetesimal formation ended. Accordingly, the presence of HED-likematerial on the surface of Bennu provides previously unrecognized constraints on thecollisional and dynamical evolution of the inner main belt

    Assessing the Sampleability of Bennu’s Surface for the OSIRIS-REx Asteroid Sample Return Mission

    No full text
    NASA’s first asteroid sample return mission, OSIRIS-REx, collected a sample from the surface of near-Earth asteroid Bennu in October 2020 and will deliver it to Earth in September 2023. Selecting a sample collection site on Bennu’s surface was challenging due to the surprising lack of large ponded deposits of regolith particles exclusively fine enough (≀2cm diameter) to be ingested by the spacecraft’s Touch-and-Go Sample Acquisition Mechanism (TAGSAM). Here we describe the Sampleability Map of Bennu, which was constructed to aid in the selection of candidate sampling sites and to estimate the probability of collecting sufficient sample. “Sampleability” is a numeric score that expresses the compatibility of a given area’s surface properties with the sampling mechanism. The algorithm that determines sampleability is a best fit functional form to an extensive suite of laboratory testing outcomes tracking the TAGSAM performance as a function of four observable properties of the target asteroid. The algorithm and testing were designed to measure and subsequently predict TAGSAM collection amounts as a function of the minimum particle size, maximum particle size, particle size frequency distribution, and the tilt of the TAGSAM head off the surface. The sampleability algorithm operated at two general scales, consistent with the resolution and coverage of data collected during the mission. The first scale was global and evaluated nearly the full surface. Due to Bennu’s unexpected boulder coverage and lack of ponded regolith deposits, the global sampleability efforts relied heavily on additional strategies to find and characterize regions of interest based on quantifying and avoiding areas heavily covered by material too large to be collected. The second scale was site-specific and used higher-resolution data to predict collected mass at a given contact location. The rigorous sampleability assessments gave the mission confidence to select the best possible sample collection site and directly enabled successful collection of hundreds of grams of material.National Aeronautics and Space AdministrationOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    OSIRIS-APEX: An OSIRIS-REx Extended Mission to Asteroid Apophis

    No full text
    The Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft mission characterized and collected a sample from asteroid (101955) Bennu. After the OSIRIS-REx Sample Return Capsule released to Earth’s surface in 2023 September, the spacecraft diverted into a new orbit that encounters asteroid (99942) Apophis in 2029, enabling a second mission with the same unique capabilities: OSIRIS–Apophis Explorer (APEX). On 2029 April 13, the 340 m diameter Apophis will draw within ∌32,000 km of Earth’s surface, less than 1/10 the lunar distance. Apophis will be the largest object to approach Earth this closely in recorded history. This rare planetary encounter will alter Apophis’s orbit, will subject it to tidal forces that change its spin state, and may seismically disturb its surface. APEX will distantly observe Apophis during the Earth encounter and capture its evolution in real time, revealing the consequences of an asteroid undergoing tidal disturbance by a major planet. Beginning in 2029 July, the spacecraft’s instrument suite will begin providing high-resolution data of this “stony” asteroid—advancing knowledge of these objects and their connection to meteorites. Near the mission’s end, APEX will use its thrusters to excavate regolith, a technique demonstrated at Bennu. Observations before, during, and after excavation will provide insight into the subsurface and material properties of stony asteroids. Furthermore, Apophis’s material and structure have critical implications for planetary defense

    Successful Kinetic Impact into an Asteroid for Planetary Defense.

    No full text
    While no known asteroid poses a threat to Earth for at least the next century, the catalog of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1-3. A test of kinetic impact technology was identified as the highest priority space mission related to asteroid mitigation1. NASA's Double Asteroid Redirection Test (DART) mission is the first full-scale test of kinetic impact technology. The mission's target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by DART's impact4. While past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft's autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in Dimorphos's orbit7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary
    corecore