1,281 research outputs found

    Thermo-optic noise in coated mirrors for high-precision optical measurements

    Get PDF
    Thermal fluctuations in the coatings used to make high-reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational wave detectors. There are two recognized sources of coating thermal noise, mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermo-elastic and thermo-refractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO

    A fast search strategy for gravitational waves from low-mass X-ray binaries

    Full text link
    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems based on the incoherent sum of frequency modulated binary signal sidebands. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required apriori. For the final stage we propose a fully coherent Markov chain monte carlo based follow up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass X-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting X-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search.Comment: 13 pages, 3 figures, to appear in the GWDAW 11 conference proceeding

    Feasibility of measuring the Shapiro time delay over meter-scale distances

    Full text link
    The time delay of light as it passes by a massive object, first calculated by Shapiro in 1964, is a hallmark of the curvature of space-time. To date, all measurements of the Shapiro time delay have been made over solar-system distance scales. We show that the new generation of kilometer-scale laser interferometers being constructed as gravitational wave detectors, in particular Advanced LIGO, will in principle be sensitive enough to measure variations in the Shapiro time delay produced by a suitably designed rotating object placed near the laser beam. We show that such an apparatus is feasible (though not easy) to construct, present an example design, and calculate the signal that would be detectable by Advanced LIGO. This offers the first opportunity to measure space-time curvature effects on a laboratory distance scale.Comment: 13 pages, 6 figures; v3 has updated instrumental noise curves plus a few text edits; resubmitted to Classical and Quantum Gravit

    Gravitational wave radiometry: Mapping a stochastic gravitational wave background

    Get PDF
    The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either of cosmological or astrophysical origin, bears a strong semblance to the analysis of CMB anisotropy and polarization. The basic statistic we use is the cross-correlation between the data from a pair of detectors. In order to `point' the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map that has been successfully used in the broadly similar, well-studied CMB map making problem. We numerically implement and demonstrate the method on simulated (unpolarized) SGWB for the radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include `realistic' additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.Comment: 24 pages, 19 figures, pdflatex. Matched version published in Phys. Rev. D - minor change

    Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    Get PDF
    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3 x 10^(-21) to 1.4 x 10^(-20) on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0 x 10^(-44) to 1.3 x 10^(-45) erg

    Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors: A review of the state of the art

    Full text link
    In this Perspective we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented in a workshop{\dag} bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains, while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes, as well as optical metrology on large-area (~10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise AlGaAs mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these novel materials.Comment: 13pages, 3 figure
    • …
    corecore