63 research outputs found

    Charge-carrier behavior in Ba-, Sr- and Yb-filled CoSb3_3: NMR and transport studies

    Get PDF
    We report 59^{59}Co NMR and transport measurements on nn-type filled skutterudites Bax_xYby_yCo4_4Sb12_{12} and AAx_xCo4_4Sb12_{12} (AA= Ba, Sr), promising thermoelectric materials. The results demonstrate consistently that a shallow defect level near the conduction band minimum dominates the electronic behavior, in contrast to the behavior of unfilled CoSb3_3. To analyze the results, we modeled the defect as having a single peak in the density of states, occupied at low temperatures due to donated charges from filler atoms. We fitted the NMR shifts and spin-lattice relaxation rates allowing for arbitrary carrier densities and degeneracies. The results provide a consistent picture for the Hall data, explaining the temperature dependence of the carrier concentration. Furthermore, without adjusting model parameters, we calculated Seebeck coefficient curves, which also provide good consistency. In agreement with recently reported computational results, it appears that composite native defects induced by the presence of filler atoms can explain this behavior. These results provide a better understanding of the balance of charge carriers, of crucial importance for designing improved thermoelectric materials.Comment: 9 pages, 8 figure

    Thermoelectric enhancement in PbTe with K, Na co-doping from tuning the interaction of the light and heavy hole valence bands

    Full text link
    The effect of K and K-Na substitution for Pb atoms in the rock salt lattice of PbTe was investigated to test a hypothesis for development of resonant states in the valence band that may enhance the thermoelectric power. We combined high temperature Hall-effect, electrical conductivity and thermal conductivity measurements to show that K-Na co-doping do not form resonance states but2 can control the energy difference of the maxima of the two primary valence sub-bands in PbTe. This leads to an enhanced interband interaction with rising temperature and a significant rise in the thermoelectric figure of merit of p-type PbTe. The experimental data can be explained by a combination of a single and two-band model for the valence band of PbTe depending on hole density that varies in the range of 1-15 x 10^19 cm^-3.Comment: 8 figure

    Promising bulk nanostructured Cu<sub>2</sub>Se thermoelectrics via high throughput and rapid chemical synthesis

    Get PDF
    A facile and high yield synthesis route was developed for the fabrication of bulk nanostructured copper selenide (Cu2Se) with high thermoelectric efficiency. Starting from readily available precursor materials and by means of rapid and energy-efficient microwave-assisted thermolysis, nanopowders of Cu2Se were synthesized. Powder samples and compacted pellets have been characterized in detail for their structural, microstructural and transport properties. alpha to beta phase transition of Cu2Se was confirmed using temperature dependent X-ray powder diffraction and differential scanning calorimetry analyses. Scanning electron microscopy analysis reveals the presence of secondary globular nanostructures in the order of 200 nm consisting of <50 nm primary particles. High resolution transmission electron microscopy analysis confirmed the highly crystalline nature of the primary particles with irregular truncated morphology. Through a detailed investigation of different parameters in the compaction process, such as applied load, heating rate, and cooling profiles, pellets with preserved nanostructured grains were obtained. An applied load during the controlled cooling profile was demonstrated to have a big impact on the final thermoelectric efficiency of the consolidated pellets. A very high thermoelectric figure of merit (ZT) above 2 was obtained at 900 K for SPS-compacted Cu2Se nanopowders in the absence of the applied load during the controlled cooling step. The obtained ZT exceeds the state of the art in the temperature ranges above phase transition, approaching up to 25% improvement at 900 K. The results demonstrate the prominent improvement in ZT attributed both to the low thermal conductivity, as low as 0.38 W m(-1) K-1 at 900 K, and the enhancement in the power factor of nanostructured Cu2Se. The proposed synthesis scheme as well as the consolidation could lead to reliable production of large scale thermoelectric nanopowders for niche applications
    corecore