3,094 research outputs found

    Classical Dynamical Systems from q-algebras:"cluster" variables and explicit solutions

    Full text link
    A general procedure to get the explicit solution of the equations of motion for N-body classical Hamiltonian systems equipped with coalgebra symmetry is introduced by defining a set of appropriate collective variables which are based on the iterations of the coproduct map on the generators of the algebra. In this way several examples of N-body dynamical systems obtained from q-Poisson algebras are explicitly solved: the q-deformed version of the sl(2) Calogero-Gaudin system (q-CG), a q-Poincare' Gaudin system and a system of Ruijsenaars type arising from the same (non co-boundary) q-deformation of the (1+1) Poincare' algebra. Also, a unified interpretation of all these systems as different Poisson-Lie dynamics on the same three dimensional solvable Lie group is given.Comment: 19 Latex pages, No figure

    Classical Lie algebras and Drinfeld doubles

    Full text link
    The Drinfeld double structure underlying the Cartan series An, Bn, Cn, Dn of simple Lie algebras is discussed. This structure is determined by two disjoint solvable subalgebras matched by a pairing. For the two nilpotent positive and negative root subalgebras the pairing is natural and in the Cartan subalgebra is defined with the help of a central extension of the algebra. A new completely determined basis is found from the compatibility conditions in the double and a different perspective for quantization is presented. Other related Drinfeld doubles on C are also considered.Comment: 11 pages. submitted for publication to J. Physics

    The spin 1/2 Calogero-Gaudin System and its q-Deformation

    Full text link
    The spin 1/2 Calogero-Gaudin system and its q-deformation are exactly solved: a complete set of commuting observables is diagonalized, and the corresponding eigenvectors and eigenvalues are explicitly calculated. The method of solution is purely algebraic and relies on the co-algebra simmetry of the model.Comment: 15 page

    (1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups

    Full text link
    All Lie bialgebra structures for the (1+1)-dimensional centrally extended Schrodinger algebra are explicitly derived and proved to be of the coboundary type. Therefore, since all of them come from a classical r-matrix, the complete family of Schrodinger Poisson-Lie groups can be deduced by means of the Sklyanin bracket. All possible embeddings of the harmonic oscillator, extended Galilei and gl(2) Lie bialgebras within the Schrodinger classification are studied. As an application, new quantum (Hopf algebra) deformations of the Schrodinger algebra, including their corresponding quantum universal R-matrices, are constructed.Comment: 25 pages, LaTeX. Possible applications in relation with integrable systems are pointed; new references adde

    From Quantum Universal Enveloping Algebras to Quantum Algebras

    Full text link
    The ``local'' structure of a quantum group G_q is currently considered to be an infinite-dimensional object: the corresponding quantum universal enveloping algebra U_q(g), which is a Hopf algebra deformation of the universal enveloping algebra of a n-dimensional Lie algebra g=Lie(G). However, we show how, by starting from the generators of the underlying Lie bialgebra (g,\delta), the analyticity in the deformation parameter(s) allows us to determine in a unique way a set of n ``almost primitive'' basic objects in U_q(g), that could be properly called the ``quantum algebra generators''. So, the analytical prolongation (g_q,\Delta) of the Lie bialgebra (g,\delta) is proposed as the appropriate local structure of G_q. Besides, as in this way (g,\delta) and U_q(g) are shown to be in one-to-one correspondence, the classification of quantum groups is reduced to the classification of Lie bialgebras. The su_q(2) and su_q(3) cases are explicitly elaborated.Comment: 16 pages, 0 figures, LaTeX fil

    A systematic construction of completely integrable Hamiltonians from coalgebras

    Full text link
    A universal algorithm to construct N-particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the so(2,1)so(2,1) algebra and the oscillator algebra h4h_4 are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the (1+1)(1+1) Poincar\'e algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.Comment: 26 pages, LaTe

    Site-diluted three dimensional Ising Model with long-range correlated disorder

    Full text link
    We study two different versions of the site-diluted Ising model in three dimensions with long-range spatially correlated disorder by Monte Carlo means. We use finite-size scaling techniques to compute the critical exponents of these systems, taking into account the strong scaling-corrections. We find a ν\nu value that is compatible with the analytical predictions.Comment: 19 pages, 1 postscript figur

    Integrable deformations of oscillator chains from quantum algebras

    Full text link
    A family of completely integrable nonlinear deformations of systems of N harmonic oscillators are constructed from the non-standard quantum deformation of the sl(2,R) algebra. Explicit expressions for all the associated integrals of motion are given, and the long-range nature of the interactions introduced by the deformation is shown to be linked to the underlying coalgebra structure. Separability and superintegrability properties of such systems are analysed, and their connection with classical angular momentum chains is used to construct a non-standard integrable deformation of the XXX hyperbolic Gaudin system.Comment: 15 pages, LaTe

    Exact Solution of the Quantum Calogero-Gaudin System and of its q-Deformation

    Full text link
    A complete set of commuting observables for the Calogero-Gaudin system is diagonalized, and the explicit form of the corresponding eigenvalues and eigenfunctions is derived. We use a purely algebraic procedure exploiting the co-algebra invariance of the model; with the proper technical modifications this procedure can be applied to the qq-deformed version of the model, which is then also exactly solved.Comment: 20 pages Late

    Induced Representations of Quantum Kinematical Algebras and Quantum Mechanics

    Full text link
    Unitary representations of kinematical symmetry groups of quantum systems are fundamental in quantum theory. We propose in this paper its generalization to quantum kinematical groups. Using the method, proposed by us in a recent paper (olmo01), to induce representations of quantum bicrossproduct algebras we construct the representations of the family of standard quantum inhomogeneous algebras Uλ(isoω(2))U_\lambda(iso_{\omega}(2)). This family contains the quantum Euclidean, Galilei and Poincar\'e algebras, all of them in (1+1) dimensions. As byproducts we obtain the actions of these quantum algebras on regular co-spaces that are an algebraic generalization of the homogeneous spaces and qq--Casimir equations which play the role of qq--Schr\"odinger equations.Comment: LaTeX 2e, 20 page
    corecore