Abstract

A universal algorithm to construct N-particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the so(2,1)so(2,1) algebra and the oscillator algebra h4h_4 are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the (1+1)(1+1) Poincar\'e algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.Comment: 26 pages, LaTe

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019