2,809 research outputs found
Detecting long-term occupancy changes in Californian odonates from natural history and citizen science records
In a world of rapid environmental change, effective biodiversity conservation and management relies on our ability to detect changes in species occurrence. While long-term, standardized monitoring is ideal for detecting change, such monitoring is costly and rare. An alternative approach is to use historical records from natural history collections as a baseline to compare with recent observations. Here, we combine natural history collection data with citizen science observations within a hierarchical Bayesian occupancy modeling framework to identify changes in the occupancy of Californian dragonflies and damselflies (Odonata) over the past century. We model changes in the probability of occupancy of 34 odonate species across years and as a function of climate, after correcting for likely variation in detection probability using proxies for recorder effort and seasonal variation. We then examine whether biological traits can help explain variation in temporal trends. Models built using only opportunistic records identify significant changes in occupancy across years for 14 species, with eight of those showing significant declines and six showing significant increases in occupancy in the period 1900–2013. These changes are consistent with estimates obtained using more standardized resurvey data, regardless of whether resurvey data are used individually or in conjunction with the opportunistic dataset. We find that species increasing in occupancy over time are also those whose occupancy tends to increase with higher minimum temperatures, which suggests that these species may be benefiting from increasing temperatures across California. Furthermore, these species are also mostly habitat generalists, whilst a number of habitat specialists display some of the largest declines in occupancy across years. Our approach enables more robust estimates of temporal trends from opportunistic specimen and observation data, thus facilitating the use of these data in biodiversity conservation and management
A Comparison and Strategy of Semantic Segmentation on Remote Sensing Images
In recent years, with the development of aerospace technology, we use more
and more images captured by satellites to obtain information. But a large
number of useless raw images, limited data storage resource and poor
transmission capability on satellites hinder our use of valuable images.
Therefore, it is necessary to deploy an on-orbit semantic segmentation model to
filter out useless images before data transmission. In this paper, we present a
detailed comparison on the recent deep learning models. Considering the
computing environment of satellites, we compare methods from accuracy,
parameters and resource consumption on the same public dataset. And we also
analyze the relation between them. Based on experimental results, we further
propose a viable on-orbit semantic segmentation strategy. It will be deployed
on the TianZhi-2 satellite which supports deep learning methods and will be
lunched soon.Comment: 8 pages, 3 figures, ICNC-FSKD 201
On Binary Matroid Minors and Applications to Data Storage over Small Fields
Locally repairable codes for distributed storage systems have gained a lot of
interest recently, and various constructions can be found in the literature.
However, most of the constructions result in either large field sizes and hence
too high computational complexity for practical implementation, or in low rates
translating into waste of the available storage space. In this paper we address
this issue by developing theory towards code existence and design over a given
field. This is done via exploiting recently established connections between
linear locally repairable codes and matroids, and using matroid-theoretic
characterisations of linearity over small fields. In particular, nonexistence
can be shown by finding certain forbidden uniform minors within the lattice of
cyclic flats. It is shown that the lattice of cyclic flats of binary matroids
have additional structure that significantly restricts the possible locality
properties of -linear storage codes. Moreover, a collection of
criteria for detecting uniform minors from the lattice of cyclic flats of a
given matroid is given, which is interesting in its own right.Comment: 14 pages, 2 figure
de Branges-Rovnyak spaces: basics and theory
For a contractive analytic operator-valued function on the unit disk
, de Branges and Rovnyak associate a Hilbert space of analytic
functions and related extension space
consisting of pairs of analytic functions on the unit disk . This
survey describes three equivalent formulations (the original geometric de
Branges-Rovnyak definition, the Toeplitz operator characterization, and the
characterization as a reproducing kernel Hilbert space) of the de
Branges-Rovnyak space , as well as its role as the underlying
Hilbert space for the modeling of completely non-isometric Hilbert-space
contraction operators. Also examined is the extension of these ideas to handle
the modeling of the more general class of completely nonunitary contraction
operators, where the more general two-component de Branges-Rovnyak model space
and associated overlapping spaces play key roles. Connections
with other function theory problems and applications are also discussed. More
recent applications to a variety of subsequent applications are given in a
companion survey article
General Form of the Color Potential Produced by Color Charges of the Quark
Constant electric charge satisfies the continuity equation where is the current density of the electron.
However, the Yang-Mills color current density of the quark
satisfies the equation which is not a continuity
equation () which implies that a color charge
of the quark is not constant but it is time dependent where
are color indices. In this paper we derive general form of color
potential produced by color charges of the quark. We find that the general form
of the color potential produced by the color charges of the quark at rest is
given by \Phi^a(x) =A_0^a(t,{\bf x}) =\frac{q^b(t-\frac{r}{c})}{r}\[\frac{{\rm
exp}[g\int dr \frac{Q(t-\frac{r}{c})}{r}] -1}{g \int dr
\frac{Q(t-\frac{r}{c})}{r}}\]_{ab} where integration is an indefinite
integration, ~~ , ~~, ~~ is the retarded time, ~~ is the speed
of light, ~~ is the position of the quark at the retarded
time and the repeated color indices (=1,2,...8) are summed. For constant
color charge we reproduce the Coulomb-like potential
which is consistent with the Maxwell theory where
constant electric charge produces the Coulomb potential
.Comment: Final version, two more sections added, 45 pages latex, accepted for
publication in JHE
Estimating design flood magnitude for a Vietnamese catchment
© 2015, Engineers Australia. All rights reserved. Flood is a common phenomenon in many tropical countries. Estimation of design flood flow has been a concern for many years in both hydrologic research and in hydrologic practice. Design flood magnitudes provide a basis for sustainable flood management which has the aims of reducing flood risk, and protecting people's lives and property. Design flood magnitudes for a given location can be estimated by a number of approaches including analysis of past flood statistics or the use of catchment modelling approaches like design storm methods or continuous simulation. The aim of this paper is to apply Annual Maximum Series fitting method for design flood estimation in continuous simulation with particular reference to a monsoon catchment. In this aspect, the annual maximum series was used as a performance measure rather than reproduction of individual hydrographs. This approach was used as the focus was on reproducing the observed frequency curve. For this purpose, a case study is performed for a large catchment, namely the Ba River, located in central Vietnam. This catchment is subject to a monsoonal climate and also to tropical cyclones
The hydrological performance of a permeable pavement
Urban stormwater runoff is a transport medium for many contaminants from anthropogenic sources. There are many alternative management strategies available to treat these contaminants. One of the technologies suggested for this purpose is the use of permeable pavements to minimise the quantity of surface runoff generated by impervious surfaces within an urban catchment. Reported herein are the results of a monitoring program undertaken to assess the effectiveness of permeable road surface for managing the quantity and quality of stormwater runoff. It was found that the catchment, where the permeable road surface was installed, had the effective imperviousness reduced from 45% prior to reconstruction of the road surface to less than 5% after reconstruction of the road. Furthermore, it was found that the generation of surface runoff from the permeable road surface required a rainfall intensity in excess of 20 mm/h. Finally, the quality of the surface runoff was found to be at the lower levels of runoff from road surfaces. © 2010 Taylor & Francis
The influence of the calibration metric on design flood estimation using continuous simulation
© 2016 International Association for Hydro-Environment Engineering and Research. Estimation of design flood flow has been and remains a concern for both hydrologic research and hydrologic practice. Knowledge of design flood flows provides a basis for sustainable flood management, which has the aim of reducing flood risk, thereby protecting people’s lives and property. Design floods for a given location can be estimated by a number of approaches including analysis of past flood statistics and the use of catchment modelling. When catchment modelling approaches are applied estimation of design flood flows, there is a need to calibrate the model parameters. As part of this calibration process, a calibration metric, or fitness measure, is needed to enable assessment of alternative sets of parameter values. Presented herein is an investigation into design flood quantiles derived from predictions obtained from a continuous catchment modelling system when alternative calibration metrics are used to assess the suitability of parameter values. Two alternative calibration metrics are considered with one calibration metric aimed at ensuring replication of recorded hydrographs and the second calibration metric aimed at ensuring replication of the statistical characteristics of the annual maxima series. It was found that use of the later calibration metric resulted in better reproduction of the flood probability model estimated from the historical data while reproduction of the recorded hydrographs (i.e. the first calibration metric) did not ensure reproduction of the flood probability model
Recommended from our members
Targeted and Genome-Scale Methylomics Reveals Gene Body Signatures in Human Cell Lines
Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions
- …
