23,263 research outputs found
Transonic stability and control characteristics of a 0.015 scale model 69-0 of the space shuttle orbiter with forebody RSI modification in the NASA/LaRC 8 foot TPT (LA72)
Tests were conducted in the NASA/LaRC 8 foot transonic wind tunnel from March 26 through 31, 1976. The model was a 0.015 scale SSV Orbiter with forebody modifications to simulate slight reductions in the reusable surface insulation (RSI) thickness. Six component aerodynamic force and moment data were obtained at Mach numbers from 0.35 to 1.20 over an angle of attack range from -2 deg to 20 deg at sideslip angles of 0 deg and 5 deg
Tungsten thermal neutron dosimeter
Tungsten-185 activity, which is produced by neutron activation of tungsten-184, determines thermal neutron flux. Radiochemical separation methods and counting techniques for irradiated tungsten provide accurate determination of the radiation exposure
Chemistry in One Dimension
We report benchmark results for one-dimensional (1D) atomic and molecular
systems interacting via the Coulomb operator . Using various
wavefunction-type approaches, such as Hartree-Fock theory, second- and
third-order M{\o}ller-Plesset perturbation theory and explicitly correlated
calculations, we study the ground state of atoms with up to ten electrons as
well as small diatomic and triatomic molecules containing up to two electrons.
A detailed analysis of the 1D helium-like ions is given and the expression of
the high-density correlation energy is reported. We report the total energies,
ionization energies, electron affinities and other interesting properties of
the many-electron 1D atoms and, based on these results, we construct the 1D
analog of Mendeleev's periodic table. We find that the 1D periodic table
contains only two groups: the alkali metals and the noble gases. We also
calculate the dissociation curves of various 1D diatomics and study the
chemical bond in H, HeH, He, H, HeH and
He. We find that, unlike their 3D counterparts, 1D molecules are
primarily bound by one-electron bonds. Finally, we study the chemistry of
H and we discuss the stability of the 1D polymer resulting from an
infinite chain of hydrogen atoms.Comment: 27 pages, 7 figure
Uniform Electron Gases. II. The Generalized Local Density Approximation in One Dimension
We introduce a generalization (gLDA) of the traditional Local Density
Approximation (LDA) within density functional theory. The gLDA uses both the
one-electron Seitz radius \rs and a two-electron hole curvature parameter
at each point in space. The gLDA reduces to the LDA when applied to the
infinite homogeneous electron gas but, unlike the LDA, is is also exact for
finite uniform electron gases on spheres. We present an explicit gLDA
functional for the correlation energy of electrons that are confined to a
one-dimensional space and compare its accuracy with LDA, second- and
third-order M{\o}ller-Plesset perturbation energies and exact calculations for
a variety of inhomogeneous systems.Comment: 26 pages, 2 figures, accepted for publication in Journal of Chemical
Physic
High supersonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 space shuttle orbiter tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA75), volume 2
For abstract, see preceding accession
Flow field prediction and analysis study for project RAM B3 Final report
Flow field properties in shock layer surrounding Ram B3 vehicl
High temperature polyimide foams for shuttle upper surface thermal insulation
Polyimide foams developed by Monsanto Company were examined for use as upper surface space shuttle thermal insulation. It was found that postcured polyimide foams having a density of 64 kg/cu m (4 lb/cu ft) had acceptable physical properties up to and exceeding 700 K (800 F). Physical tests included cyclic heating and cooling in vacuum, weight and dimensional stability, mechanical strength and impact resistance, acoustic loading and thermal conductivity. Molding and newly developed postcuring procedures were defined
Heavy to Light Meson Exclusive Semileptonic Decays in Effective Field Theory of Heavy Quark
We present a general study on exclusive semileptonic decays of heavy (B, D,
B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field
theory of heavy quark. Transition matrix elements of these decays can be
systematically characterized by a set of wave functions which are independent
of the heavy quark mass except for the implicit scale dependence. Form factors
for all these decays are calculated consistently within the effective theory
framework using the light cone sum rule method at the leading order of 1/m_Q
expansion. The branching ratios of these decays are evaluated, and the heavy
and light flavor symmetry breaking effects are investigated. We also give
comparison of our results and the predictions from other approaches, among
which are the relations proposed recently in the framework of large energy
effective theory.Comment: 18 pages, ReVtex, 5 figures, added references and comparison of
results, and corrected signs in some formula
- …