33 research outputs found

    Room temperature manipulation of long lifetime spins in metallic-like carbon nanospheres

    Get PDF
    The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin–lattice and spin–spin relaxation times of electrons. Minimizing the effects of spin–orbit coupling and the local magnetic contributions of neighbouring atoms on spin–lattice and spin–spin relaxation times at room temperature remain substantial challenges to practical spintronics. Here we report conduction electron spin–lattice and spin–spin relaxation times of 175 ns at 300 K in 37±7 nm carbon spheres, which is remarkably long for any conducting solid- state material of comparable size. Following the observation of spin polarization by electron spin resonance, we control the quantum state of the electron spin by applying short bursts of an oscillating magnetic field and observe coherent oscillations of the spin state. These results demonstrate the feasibility of operating electron spins in conducting carbon nanospheres as quantum bits at room temperature

    Rapid thickness reading of CH3NH3PbI3 nanowire thin films from color maps

    Get PDF
    Hybrid halide perovskite photovoltaic materials show a remarkable light conversion efficiency in various optoelectronic devices. In the fabrication of these solar cells, light emitting diodes, laser and photodetector prototypes the thickness of the perovskite is an important parameter since the light is absorbed within a thin layer of a few hundred nanometers. Nevertheless, making perovskite coatings with various solution-based and evaporation methods showing highly reproducible thickness and area coverage is still an issue. Therefore, rapid and reliable quality-control of the film morphology is needed. This report shows a simple, rapid, and calibration-free method for reading the thickness directly from the color map of nanowire perovskite films seen in standard optical microscope with visible light. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    A quantum electronic device

    No full text
    This disclosure relates to quantum electronic devices for storing qubits. In particular, this disclosure relates to a quantum electronic device comprising a carbon nanosphere adapted to store a qubit represented by an electron spin and a control and readout device to set the qubit and read the qubit stored on the carbon nanosphere. Qubits stored on carbon nanospheres have a long electron spin lifetime at room temperature. This disclosure further relates to a method for quantum computing. The method comprises storing a qubit represented by an electron spin on a carbon nanosphere, performing a quantum operation on the qubit to generate a resulting qubit and reading the resulting qubit from the nanosphere. There is further provided a spintronic device comprising multiple carbon nanospheres adapted to provide a qubit represented by an electron spin in that carbon nanosphere and a control device to facilitate interaction between the qubits to perform a quantum operation

    Electron spin lifetime in chemically synthesized graphene sheets

    No full text
    Graphene is theoretically expected to be a highly suitable material for spintronic and quantum computation applications. Current experimental reports assign surprisingly low spin lifetimes to graphene and related carbon structures. Recently, we showed a solvothermal synthesis method that can be employed to produce a high-purity sample, which approximates very well the assembly of graphene sheets. Using the contactless spectroscopic technique of electron spin resonance (ESR), we were able to identify in this graphene material the ESR of both conduction electrons and localized spins [Nafradi et al., Carbon 74, 346-351 (2014)]. Here, we show the temperature dependent evolution of the ESR of these two spin species. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Electron Spin Dynamics of Two-Dimensional Layered Materials

    No full text
    The growing library of two-dimensional layered materials is providing researchers with a wealth of opportunity to explore and tune physical phenomena at the nanoscale. Here, we review the experimental and theoretical state-of-art concerning the electron spin dynamics in graphene, silicene, phosphorene, transition metal dichalcogenides, covalent heterostructures of organic molecules and topological materials. The spin transport, chemical and defect induced magnetic moments, and the effect of spin-orbit coupling and spin relaxation, are also discussed in relation to the field of spintronics

    Spin lifetime of itinerant electrons in chemically synthesized graphene multi-layers

    No full text
    A chemically synthesized graphitic material where the structural coherence between the layers is missing approximates very well the assembly of graphene sheets. Our multi-frequency (9.4-420 GHz) electron spin resonance (ESR) study clearly identifies itinerant and localized electrons below 50 K. The metallic signal ascribed to the conduction electrons in graphene is characterized by a remarkably long spin lifetime of 65 ns. Above this temperature incoherent in-plane and inter-plane scattering give a motionally narrowed single line at g = 2.0044. (C) 2014 Elsevier Ltd. All rights reserved

    Radiation detection and energy conversion in nuclear reactor environments by hybrid photovoltaic perovskites

    No full text
    Detection and direct power conversion of high energy and high intensity ionizing radiation could be a key element in next generation nuclear reactor safety systems and space-born devices. For example, the Fukushima catastrophe in 2011 could have been largely prevented if 1% of the reactor's remnant radiation (gamma-rays of the nuclear fission) were directly converted within the reactor to electricity to power the water cooling circuit. It is reported here that the hybrid halide perovskite methylammonium lead triiodide could perfectly play the role of a converter. Single crystals were irradiated by a typical shut-down gamma-spectrum of a nuclear reactor with 7.61 x 10(14) Bq activity exhibit a high-efficiency of gamma-ray to free charge carrier conversion with radiation hardening. The power density of 0.3 mW/kg of methylammonium lead triiodide at 50 Sv/h means a four times higher efficiency than that for silicon-based cells. The material was stable to the limits of the experiment without changing its performance up to 100 Sv/h dose rate and 57 Sv H*(10) ambient total gamma-dose. Moreover, the gamma-shielding performance of methylammonium lead triiodide was found to be superior to both ordinary and barite concrete

    Continuous-wave far-infrared ESR spectrometer for high-pressure measurements

    No full text
    We present a newly-developed microwave probe for performing sensitive high-field/multi-frequency electron spin resonance (ESR) measurements under high hydrostatic pressures. The system consists of a BeCu-made pressure-resistant vessel, which accommodates the investigated sample and a diamond microwave coupling window. The probe's interior is completely filled with a pressure-transmitting fluid. The setup operates in reflection mode and can easily be assembled with a standard oversized microwave circuitry. The probe-head withstands hydrostatic pressures up to 1.6 GPa and interfaces with our home-built quasi-optical high-field ESR facility, operating in a millimeter/submillimeter frequency range of 105-420 GHz and in magnetic fields up to 16 T. The overall performance of the probe was tested, while studying the pressure-induced changes in the spin-relaxation mechanisms of a quasi-1D conducting polymer, KC60. The preliminary measurements revealed that the probe yields similar signal-to-noise ratio to that of commercially available low-frequency ESR spectrometers. Moreover, by observing the conduction electron spin resonance (CESR) linewidth broadening for KC60 in an unprecedented microwave frequency range of 210-420 GHz and in the pressure range of up to 1.6 GPa, we demonstrate that a combination of high-pressure ESR probe and high-field/multi-frequency spectrometer allows us to measure the spin relaxation rates in conducting spin systems, like the quasi-ID conductor, KC60. (C) 2008 Elsevier Inc. All rights reserved

    Towards electron spin resonance of mechanically exfoliated graphene

    No full text
    We have attempted to prepare graphene samples by mechanical exfoliation of HOPG (highly oriented pyrolytic graphite) using scotch tape. Random testing of the flakes by AFM has shown in majority single layer graphene. Nevertheless, the presence of ultrathine graphite cannot be excluded in the large assembly of flakes needed for electron spin resonance (ESR) measurements. Graphene flakes sitting on ESR-silent scotch tapes were stacked parallel to form a multilayer sandwich. The ESR measurements performed in the 4-300 K range yielded narrow Lorentzian line. The spin susceptibility was decreasing linearly with decreasing temperature as expected for the conical band dispersion of graphene. Below 70 K the spin susceptibility started to deviate from the linear temperature dependence and a Curie-like behavior was observed. This contribution to the susceptibility is due to the existence of defects or impurities, which are in strong exchange coupling limit with conduction electrons. The temperature dependence of the linewidth suggests Elliott's mechanism for spin relaxation in graphene flakes. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore