8 research outputs found

    FULLY AUTONOMOUS SELF-POWERED INTELLIGENT WIRELESS SENSOR FOR REAL-TIME TRAFFIC SURVEILLANCE IN SMART CITIES

    Get PDF
    Reliable, real-time traffic surveillance is an integral and crucial function of the 21st century intelligent transportation systems (ITS) network. This technology facilitates instantaneous decision-making, improves roadway efficiency, and maximizes existing transportation infrastructure capacity, making transportation systems safe, efficient, and more reliable. Given the rapidly approaching era of smart cities, the work detailed in this dissertation is timely in that it reports on the design, development, and implementation of a novel, fully-autonomous, self-powered intelligent wireless sensor for real-time traffic surveillance. Multi-disciplinary, innovative integration of state-of-the-art, ultra-low-power embedded systems, smart physical sensors, and the wireless sensor network—powered by intelligent algorithms—are the basis of the developed Intelligent Vehicle Counting and Classification Sensor (iVCCS) platform. The sensor combines an energy-harvesting subsystem to extract energy from multiple sources and enable sensor node self-powering aimed at potentially indefinite life. A wireless power receiver was also integrated to remotely charge the sensor’s primary battery. Reliable and computationally efficient intelligent algorithms for vehicle detection, speed and length estimation, vehicle classification, vehicle re-identification, travel-time estimation, time-synchronization, and drift compensation were fully developed, integrated, and evaluated. Several length-based vehicle classification schemes particular to the state of Oklahoma were developed, implemented, and evaluated using machine learning algorithms and probabilistic modeling of vehicle magnetic length. A feature extraction employing different techniques was developed to determine suitable and efficient features for magnetic signature-based vehicle re-identification. Additionally, two vehicle re-identification models based on matching vehicle magnetic signature from a single magnetometer were developed. Comprehensive system evaluation and extensive data analyses were performed to fine-tune and validate the sensor, ensuring reliable and robust operation. Several field studies were conducted under various scenarios and traffic conditions on a number of highways and urban roads and resulted in 99.98% detection accuracy, 97.4782% speed estimation accuracy, and 97.6951% classification rate when binning vehicles into four groups based on their magnetic length. Threshold-based, re-identification results revealed 65.25%~100% identification rate for a window of 25~500 vehicles. Voting-based, re-identification evaluation resulted in 90~100% identification rate for a window of 25~500 vehicles. The developed platform is portable and cost-effective. A single sensor node costs only $30 and can be installed for short-term use (e.g., work zone safety, traffic flow studies, roadway and bridge design, traffic management in atypical situations), as well as long-term use (e.g., collision avoidance at intersections, traffic monitoring) on highways, roadways, or roadside surfaces. The power consumption assessment showed that the sensor is operational for several years. The iVCCS platform is expected to significantly supplement other data collection methods used for traffic monitoring throughout the United States. The technology is poised to play a vital role in tomorrow’s smart cities

    Constructivist Multi-Access Lab Approach in Teaching FPGA Systems Design with LabVIEW

    Get PDF
    Embedded systems play vital role in modern applications [1]. They can be found in autos, washing machines, electrical appliances and even in toys. FPGAs are the most recent computing technology that is used in embedded systems. There is an increasing demand on FPGA based embedded systems, in particular, for applications that require rapid time responses. Engineering education curricula needs to respond to the increasing industrial demand of using FPGAs by introducing new syllabus for teaching and learning this subject. This paper describes the development of new course material for teaching FPGA-based embedded systems design by using ‘G’ Programming Language of LabVIEW. A general overview of FPGA role in engineering education is provided. A survey of available Hardware Programming Languages for FPGAs is presented. A survey about LabVIEW utilization in engineering education is investigated; this is followed by a motivation section of why to use LabVIEW graphical programming in teaching and its capabilities. Then, a section of choosing a suitable kit for the course is laid down. Later, constructivist closed-loop model the FPGA course has been proposed in accordance with [2- 4; 80,86,89,92]. The paper is proposing a pedagogical framework for FPGA teaching; pedagogical evaluation will be conducted in future studies. The complete study has been done at the Faculty of Electrical and Electronic Engineering, Aleppo University

    A novel FPGA educational paradigm using the next generation programming languages case of an embedded FPGA system course

    No full text
    Embedded systems play vital role in modern applications [1]. They can be found in autos, washing machines, electrical appliances and even in toys. FPGAs are the most recent computing technology that is used in embedded systems. There is an increasing demand on FPGA based embedded systems, in particular, for applications that require rapid time responses. Engineering education curricula needs to respond to the increasing industrial demand of using FPGAs by introducing new syllabus for teaching and learning this subject. This paper describes the development of new course material for teaching FPGA-based embedded systems design by using 'G' Programming Language of LabVIEW. A general overview of FPGA role in engineering education is provided. A survey of available Hardware Programming Languages for FPGAs is presented. A survey about LabVIEW utilization in engineering education is investigated; this is followed by a motivation section of why to use LabVIEW graphical programming in teaching and its capabilities. Then, a section of choosing a suitable kit for the course is laid down. Later, constructivist dynamical model of learning has been developed in accordance with [2-4]. The models are analyzed and their implications are highlighted. This followed by an overview of the designed educational examples of FPGA programming with LabVIEW for the selected kit, in accordance with the developed learning model. To expand the kit educational capacity, new external modules and peripherals have been designed. These extras are explained in details. The teaching and learning manuals of the experiments were developed in a manner that allows student-centred learning approach. Furthermore, additional video tutorials were developed to foster a self-regulated learning and lower dependence on teacher. The final section explains how LabVIEW can be used for developing a hybrid access mode Lab for the experiments (Virtual, Hands-on and Remote), in accordance with [5, 6]. The model will be applied next semester, and the paper is proposing a pedagogical framework for FPGA teaching; pedagogical evaluation will be conducted in future studies. The complete study has been done at the Faculty of Electrical and Electronic Engineering, University of Aleppo. © 2013 IEEE

    DEVELOPMENT OF INEXPENSIVE VEHICLE SENSOR NODE SYSTEM FOR VOLUME, TURN MOVEMENT AND COLLISION AVOIDANCE (FHWA-OK-16-06 2252)

    No full text
    Real-time traffic surveillance is essential in today’s intelligent transportation systems and will surely play a vital role in tomorrow’s smart cities. The work detailed in this paper reports on the development and implementation of a novel smart wireless sensor for traffic monitoring. Reliable and computationally efficient algorithms for vehicle detection, speed and length estimation, classification, and time-synchronization were fully developed, integrated, and evaluated. Comprehensive system evaluation and extensive data analysis were performed to tune and validate the system for a reliable and robust operation. Several field studies conducted on highway and urban roads for different scenarios and under various traffic conditions resulted in 99.98% detection accuracy, 97.11% speed estimation accuracy, and 97% length-based vehicle classification accuracy. The developed system is portable, reliable, and cost-effective. The system can also be used for short-term or long-term installment on surface of highway, roadway, and roadside. Implementation cost of a single node including enclosure is US $40.Final report, October 2012-December 2013N

    Development of an educationally oriented open-source embedded systems laboratory kit: A hybrid hands-on and virtual experimentation approach

    No full text
    Embedded microcontroller (MCU) systems is one of the most important topics in undergraduate electrical and electronics engineering and computer engineering curricula. Laboratory sessions are vitally important in teaching/learning of MCUs. Unfortunately, most commercially available MCU development kits are not well designed for educational purposes. In this paper, we report on the design and implementation of an educationally oriented MCU kit. The design aimed to produce a fairly universal training board that can cover a range of experiments for different topics, which resulted in embedding a rich group of peripherals. Furthermore, the kit was associated with student-centric lab manuals, training exercise, video materials, and virtual MCU experiments. This paper presents a pedagogical investigation of the impact of using the embedded systems virtual labs for preparation. The quantitative results show statistical evidence that preparation with a virtual embedded systems lab results in higher learning outcomes

    Systems engineering design of engineering education: A case of an embedded systems course

    No full text
    Systems and Cybernetics can be found elsewhere in natural and engineering sciences. Control systems methods (technical cybernetics) are the nerve of the industrial revolution; they have recently penetrated some social sciences, especially economics and finance. However, the methods are seldom used for quantitative and analytical analysis in pedagogy. Simplified quantitative dynamical models of learning are developed, namely open and closed loop learning. The models are analysed and their implications are highlighted. The models are then used as a basis of describing two modes of lecturing, open and closed loop. It is shown that closed loop learning is superior to open loop learning. Closed loop learning is stable, e.g., learning objectives can be met, and it is robust, e.g., it is bridging the gap between low profile students and their average peers. The open loop learning model is mapped to the classical passive teacher-learner approach, which is classically followed in engineering education. In an engineering approach, the mathematically analysed closed loop learning model was empirically implemented using two modern and pedagogically stressed practices: 1) problem/project-based learning (PBL); and 2) formative assessment (FA). PBL is particularly suitable for engineering education because engineering itself is inherently experiential. PBL plays as vehicle for knowledge construction. FA plays as a method of closing the loop around the PBL approach in accordance to the developed mathematical model. To evaluate the differences in learning outcomes (if any) in accordance to the hypothesized open- and closed-loop learning models, a case study on the teaching and learning of an embedded system laboratory course was conducted. The students were divided into equivalent groups: experimental and control. The control group students were taught the lab in the classical way (open-loop), e.g., attending the lab session only. The experimental group was taught with the PBL + FA approach (closed-loop), where they have been assigned problems to solve during and after each laboratory session. The solutions were discussed and corrected by the lecturer and feedback was sent to the students. As a part of the FA, the experimental group students were asked to prepare for evaluation quizzes each week to measure the impact of the assignments and preparation benefit. After four laboratory sessions, both groups were examined unexpectedly. The experimental group students outperformed significantly the control group students. Statistical analysis of the exam have shown statistically significant difference and the results verified empirically the closed-loop learning model hypothesis. Additional exam was conducted a year later after the course end to measure the long-term retention, again the experimental group students have significantly outperformed the control group students. The results showed that a Systems Engineering design via a pedagogically rooted didactic reform could lead to radical enhancement of the learning outcomes. The lecturer observed significant engagement and motivation enhancement for the experimental group students. Furthermore, the students' survey has shown better attitude of the experimental group students towards the subject. Discussions of constraints of implementing the closed-loop learning model are provided. © 2012 IEEE

    Orchestrating technology enhanced learning: A literature review and a conceptual framework

    No full text
    The notion of 'orchestrating learning' has gained acceptance within the TEL research community in recent years. However, there is little consensus about what 'orchestration' means, and what orchestrating learning in a concrete educational context entails. This paper aims to address these two concerns. Through a literature review focused especially on the field of TEL, we provide definitions of this orchestration, and gather the most commonly cited aspects of orchestration into a unified conceptual framework. This emergent framework is then used as an analytical lens to structure data from an existing case study in order to illustrate its usefulness as a tool to understand and propose new solutions to aid orchestration in complex, real-world TEL situations. Although further theorisation and modelling of orchestration is still needed, the presented framework provides a first step, backed up by a serious review of the field. Copyright © 2011 Inderscience Enterprises Ltd
    corecore