2,580 research outputs found

    Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation

    Get PDF
    Studies of climate change impacts on agricultural land use generally consider sets of climates combined with fixed socio-economic scenarios, making it impossible to compare the impact of specific factors within these scenario sets. Analysis of the impact of specific scenario factors is extremely difficult due to prohibitively long run-times of the complex models. This study produces and combines metamodels of crop and forest yields and farm profit, derived from previously developed very complex models, to enable prediction of European land use under any set of climate and socio-economic data. Land use is predicted based on the profitability of the alternatives on every soil within every 10' grid across the EU. A clustering procedure reduces 23,871 grids with 20+ soils per grid to 6,714 clusters of common soil and climate. Combined these reduce runtime 100 thousand-fold. Profit thresholds define land as intensive agriculture (arable or grassland), extensive agriculture or managed forest, or finally unmanaged forest or abandoned land. The demand for food as a function of population, imports, food preferences and bioenergy, is a production constraint, as is irrigation water available. An iteration adjusts prices to meet these constraints. A range of measures are derived at 10' grid-level such as diversity as well as overall EU production. There are many ways to utilise this ability to do rapidWhat-If analysis of both impact and adaptations. The paper illustrates using two of the 5 different GCMs (CSMK3, HADGEM with contrasting precipitation and temperature) and two of the 4 different socio-economic scenarios ("We are the world", "Should I stay or should I go" which have contrasting demands for land), exploring these using two of the 13 scenario parameters (crop breeding for yield and population) . In the first scenario, population can be increased by a large amount showing that food security is far from vulnerable. In the second scenario increasing crop yield shows that it improves the food security problem

    False vacuum decay in a brane world cosmological model

    Full text link
    The false vacuum decay in a brane world model is studied in this work. We investigate the vacuum decay via the Coleman-de Luccia instanton, derive explicit approximative expressions for the Coleman-de Luccia instanton which is close to a Hawking-Moss instanton and compare the results with those already obtained within Einstein's theory of relativity.Comment: minor changes done, references added, version to appear in GR

    Equilibrium conditions of spinning test particles in Kerr-de Sitter spacetimes

    Get PDF
    Equilibrium conditions and spin dynamics of spinning test particles are discussed in the stationary and axially symmetric Kerr-de Sitter black-hole or naked-singularity spacetimes. The general equilibrium conditions are established, but due to their great complexity, the detailed discussion of the equilibrium conditions and spin dynamics is presented only in the simple and most relevant cases of equilibrium positions in the equatorial plane and on the symmetry axis of the spacetimes. It is shown that due to the combined effect of the rotation of the source and the cosmic repulsion the equilibrium is spin dependent in contrast to the spherically symmetric spacetimes. In the equatorial plane, it is possible at the so-called static radius, where the gravitational attraction is balanced by the cosmic repulsion, for the spinless particles as well as for spinning particles with arbitrarily large azimuthal-oriented spin or at any radius outside the ergosphere with a specifically given spin orthogonal to the equatorial plane. On the symmetry axis, the equilibrium is possible at any radius in the stationary region and is given by an appropriately tuned spin directed along the axis. At the static radii on the axis the spin of particles in equilibrium must vanish

    Is there life inside black holes?

    Full text link
    Bound inside rotating or charged black holes, there are stable periodic planetary orbits, which neither come out nor terminate at the central singularity. Stable periodic orbits inside black holes exist even for photons. These bound orbits may be defined as orbits of the third kind, following the Chandrasekhar classification of particle orbits in the black hole gravitational field. The existence domain for the third kind orbits is rather spacious, and thus there is place for life inside supermassive black holes in the galactic nuclei. Interiors of the supermassive black holes may be inhabited by civilizations, being invisible from the outside. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.Comment: 11 pages, 5 figures; references adde

    Stable photon orbits in stationary axisymmetric electrovacuum spacetimes

    Get PDF
    We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we review the classification of equatorial circular photon orbits on Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordström diholes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a toroidal region around a dihole, via a selection of Poincaré sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electro vacuum, but not in pure vacuum

    Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes

    Full text link
    Astrophysical fluids may acquire non-zero electrical charge because of strong irradiation or charge separation in a magnetic field. In this case, electromagnetic and gravitational forces may act together and produce new equilibrium configurations, which are different from the uncharged ones. Following our previous studies of charged test particles and uncharged perfect fluid tori encircling compact objects, we introduce here a simple test model of a charged perfect fluid torus in strong gravitational and electromagnetic fields. In contrast to ideal magnetohydrodynamic models, we consider here the opposite limit of negligible conductivity, where the charges are tied completely to the moving matter. This is an extreme limiting case which can provide a useful reference against which to compare subsequent more complicated astrophysically-motivated calculations. To clearly demonstrate the features of our model, we construct three-dimensional axisymmetric charged toroidal configurations around Reissner-Nordstr\"om black holes and compare them with equivalent configurations of electrically neutral tori.Comment: 14 pages, 7 figure

    Plane waves in a relativistic homogeneous and isotropic elastic continuum

    Full text link
    Propagation of gravitational and acoustic plane waves in a flat universe filled with a general relativistic, homogeneous and isotropic, spatially flat continuum is studied. The continuum is described by analogues of nonrelativistic characteristics, namely energy per particle, pressure and Lame coefficients, and considered in the comoving proper-time gauge. For all modes with the given wave covector, differential equations governing the time dependence of the amplitudes are derived. In particular, longitudinal acoustic waves are described, in analogy with the nonrelativistic theory, by two coupled first-order equations. As an example, plane waves in a stiff ultrarigid continuum are considered.Comment: 12 pages, 1 figure; section 4 extended, minor changes elsewhere, author adde

    Formalism for dilepton production via virtual photon bremsstrahlung in hadronic reactions

    Get PDF
    We derive a set of new formulas for various distributions in dilepton production via virtual photon bremsstrahlung from pseudoscalar mesons and unpolarized spin-one-half fermions. These formulas correspond to the leading and sub-leading terms in the Low-Burnett-Kroll expansion for real photon bremsstrahlung. The relation of our leading-term formulas to previous works is also shown. Existing formulas are examined in the light of Lorentz covariance and gauge invariance. Numerical comparison is made in a simple example, where an "exact" formula and real photon data exist. The results reveal large discrepancies among different bremsstrahlung formulas. Of all the leading-term bremsstrahlung formulas, the one derived in this work agrees best with the exact formula. The issues of M_T-scaling and event generators are also addressed.Comment: 37 pages, RevTeX, epsf.sty, 10 embedded figure

    Binary black hole shadows, chaotic scattering and the Cantor set

    Get PDF
    We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar–Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may constructed through an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist around two black holes of equal mass M separated by a1 < a < √ 2a1, where a1 = 4M/√ 27. To show how this possibility arises, we define a certain potential function and classify its stationary points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property. Finally, we consider the possibility of following null geodesics through event horizons, and chaos in the maximally extended spacetime
    • 

    corecore