82 research outputs found

    A quantitative LumiFluo assay to test inhibitory compounds blocking p53 degradation induced by human papillomavirus oncoprotein E6 in living cells

    Get PDF
    High-risk human papillomaviruses (HR-HPVs) are the causative agents for the onset of several epithelial cancers in humans. The deregulated expression of the viral oncoproteins E6 and E7 is the driving force sustaining the progression of malignant transformation in pre-neoplastic lesions. Targeting the viral E6 oncoprotein through inhibitory compounds can counteract the survival of cancer cells due to the reactivation of p53-mediated pathways and represents an intriguing strategy to treat HPV-associated neoplasias. Here, we describe the development of a quantitative and easy-to-perform assay to monitor the E6-mediated degradation of p53 in living cells to be used for small-molecule testing. This assay allows to unbiasedly determine whether a compound can protect p53 from the E6-mediated degradation in cells, through a simple 3-step protocol. We validated the assay by testing two small molecules, SAHA and RITA, reported to impair the E6-mediated p53 degradation. Interestingly, we observed that only SAHA efficiently rescued p53, while RITA could not provide the same degree of protection. The possibility to specifically and quantitatively monitor the ability of a selected compound to rescue p53 in a cellular context through our LumiFluo assay could represent an important step towards the successful development of anti-HPV drugs

    Cellular binding partners of the human papillomavirus E6 protein

    Get PDF
    The high-risk strains of human papillomavirus (HR-HPV) are known to be causative agents of cervical cancer and have recently also been implicated in cancers of the oropharynx. E6 is a potent oncogene of HR-HPVs, and its role in the progression to malignancy has been and continues to be explored. E6 is known to interact with and subsequently inactivate numerous cellular proteins pivotal in the mediation of apoptosis, transcription of tumor suppressor genes, maintenance of epithelial organization, and control of cell proliferation. Binding of E6 to these proteins cumulatively contributes to the oncogenic potential of HPV. This paper provides an overview of these cellular protein partners of HR-E6, the motifs known to mediate oncoprotein binding, and the agents that have the potential to interfere with E6 expression and activity and thus prevent the subsequent progression to oncogenesis

    Structured Cyclic Peptides That Bind the EH Domain of EHD1

    No full text
    EHD1 mediates long-loop recycling of many receptors by forming signaling complexes using its EH domain. We report the design and optimization of cyclic peptides as ligands for the EH domain of EHD1. We demonstrate that the improved affinity from cyclization allows fluorescence-based screening applications for EH domain inhibitors. The cyclic peptide is also unusually well-structured in aqueous solution, as demonstrated using nuclear magnetic resonance-based structural models. Because few EH domain inhibitors have been described, these more potent inhibitors will improve our understanding of the roles of EHD1 in the context of cancer invasion and metastasis
    corecore