2,287 research outputs found

    Non-locality in the nucleon-nucleon interaction and nuclear matter saturation

    Get PDF
    We study the possible relationship between the saturation properties of nuclear matter and the inclusion of non-locality in the nucleon-nucleon interaction. To this purpose we compute the saturation curve of nuclear matter within the Bethe-Brueckner-Goldstone theory using a recently proposed realistic non-local potential, and compare it with the corresponding curves obtained with a purely local realistic interaction (Argonne v18_{18}) and the most recent version of the one-boson exchange potential (CD Bonn). We find that the inclusion of non-locality in the two-nucleon bare interaction strongly affects saturation, but it is unable to provide a consistent description of few-body nuclear systems and nuclear matter.Comment: 9 pages, 8 figures; v2: introduction extended, references added, discussion of fig.8 reformulated; to be published in Phys. Rev.

    Hybrid protoneutron stars with the MIT bag model

    Get PDF
    We study the hadron-quark phase transition in the interior of protoneutron stars. For the hadronic sector, we use a microscopic equation of state involving nucleons and hyperons derived within the finite-temperature Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and three-body forces. For the description of quark matter, we employ the MIT bag model both with a constant and a density-dependent bag parameter. We calculate the structure of protostars with the equation of state comprising both phases and find maximum masses below 1.6 solar masses. Metastable heavy hybrid protostars are not found.Comment: 12 pages, 9 figures submitted to Phys. Rev.

    Strange hadronic stellar matter within the Brueckner-Bethe-Goldstone theory

    Get PDF
    In the framework of the non-relativistic Brueckner-Bethe-Goldstone theory, we derive a microscopic equation of state for asymmetric and β\beta-stable matter containing Σ−\Sigma^- and Λ\Lambda hyperons. We mainly study the effects of three-body forces (TBFs) among nucleons on the hyperon formation and the equation of state (EoS). We find that, when TBFs are included, the stellar core is almost equally populated by nucleons and hyperons. The resulting EoS, which turns out to be extremely soft, has been used in order to calculate the static structure of neutron stars. We obtain a value of the maximum mass of 1.26 solar masses (1 solar mass Mo≃1.99⋅1033gM_o \simeq 1.99 \cdot 10^{33} g). Stellar rotations increase this value by about 12%.Comment: 4 pages, Latex, 2 figures included. To appear in the Proceedings of '' Bologna 2000 - Structure of the Nucleus at the Dawn of the Century'', May 29- June 3, 2000, Bologna, Ital

    Structure of hybrid protoneutron stars within the Nambu--Jona-Lasinio model

    Get PDF
    We investigate the structure of protoneutron stars (PNS) formed by hadronic and quark matter in β\beta-equilibrium described by appropriate equations of state (EOS). For the hadronic matter, we use a finite temperature EOS based on the Brueckner-Bethe-Goldstone many-body theory, with realistic two- and three-body forces. For the quark sector, we employ the Nambu--Jona-Lasinio model. We find that the maximum allowed masses are comprised in a narrow range around 1.8 solar masses, with a slight dependence on the temperature. Metastable hybrid protoneutron stars are not found.Comment: 7 pages, 6 figures, revised version accepted for publication in Phys. Rev.

    Chaos vs. Linear Instability in the Vlasov Equation: A Fractal Analysis Characterization

    Get PDF
    In this work we discuss the most recent results concerning the Vlasov dynamics inside the spinodal region. The chaotic behaviour which follows an initial regular evolution is characterized through the calculation of the fractal dimension of the distribution of the final modes excited. The ambiguous role of the largest Lyapunov exponent for unstable systems is also critically reviewed.Comment: 10 pages, RevTeX, 4 figures not included but available upon reques
    • …
    corecore