3,670 research outputs found

    Complexity vs. performance in granular embedding spaces for graph classification

    Get PDF
    The most distinctive trait in structural pattern recognition in graph domain is the ability to deal with the organization and relations between the constituent entities of the pattern. Even if this can be convenient and/or necessary in many contexts, most of the state-of the art classi\ufb01cation techniques can not be deployed directly in the graph domain without \ufb01rst embedding graph patterns towards a metric space. Granular Computing is a powerful information processing paradigm that can be employed in order to drive the synthesis of automatic embedding spaces from structured domains. In this paper we investigate several classi\ufb01cation techniques starting from Granular Computing-based embedding procedures and provide a thorough overview in terms of model complexity, embedding space complexity and performances on several open-access datasets for graph classi\ufb01cation. We witness that certain classi\ufb01cation techniques perform poorly both from the point of view of complexity and learning performances as the case of non-linear SVM, suggesting that high dimensionality of the synthesized embedding space can negatively affect the effectiveness of these approaches. On the other hand, linear support vector machines, neuro-fuzzy networks and nearest neighbour classi\ufb01ers have comparable performances in terms of accuracy, with second being the most competitive in terms of structural complexity and the latter being the most competitive in terms of embedding space dimensionality

    A multi-objective optimization approach for the synthesis of granular computing-based classification systems in the graph domain

    Get PDF
    The synthesis of a pattern recognition system usually aims at the optimization of a given performance index. However, in many real-world scenarios, there exist other desired facets to take into account. In this regard, multi-objective optimization acts as the main tool for the optimization of different (and possibly conflicting) objective functions in order to seek for potential trade-offs among them. In this paper, we propose a three-objective optimization problem for the synthesis of a granular computing-based pattern recognition system in the graph domain. The core pattern recognition engine searches for suitable information granules (i.e., recurrent and/or meaningful subgraphs from the training data) on the top of which the graph embedding procedure towards the Euclidean space is performed. In the latter, any classification system can be employed. The optimization problem aims at jointly optimizing the performance of the classifier, the number of information granules and the structural complexity of the classification model. Furthermore, we address the problem of selecting a suitable number of solutions from the resulting Pareto Fronts in order to compose an ensemble of classifiers to be tested on previously unseen data. To perform such selection, we employed a multi-criteria decision making routine by analyzing different case studies that differ on how much each objective function weights in the ranking process. Results on five open-access datasets of fully labeled graphs show that exploiting the ensemble is effective (especially when the structural complexity of the model plays a minor role in the decision making process) if compared against the baseline solution that solely aims at maximizing the performances

    Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

    Get PDF
    Graph embedding is an established and popular approach when designing graph-based pattern recognition systems. Amongst the several strategies, in the last ten years, Granular Computing emerged as a promising framework for structural pattern recognition. In the late 2000\u2019s, symbolic histograms have been proposed as the driving force in order to perform the graph embedding procedure by counting the number of times each granule of information appears in the graph to be embedded. Similarly to a bag-of-words representation of a text corpora, symbolic histograms have been originally conceived as integer-valued vectorial representation of the graphs. In this paper, we propose six \u2018relaxed\u2019 versions of symbolic histograms, where the proper dissimilarity values between the information granules and the constituent parts of the graph to be embedded are taken into account, information which is discarded in the original symbolic histogram formulation due to the hard-limited nature of the counting procedure. Experimental results on six open-access datasets of fully-labelled graphs show comparable performance in terms of classification accuracy with respect to the original symbolic histograms (average accuracy shift ranging from -7% to +2%), counterbalanced by a great improvement in terms of number of resulting information granules, hence number of features in the embedding space (up to 75% less features, on average)

    Intrusion detection in wi-fi networks by modular and optimized ensemble of classifiers

    Get PDF
    4noopenWith the breakthrough of pervasive advanced networking infrastructures and paradigms such as 5G and IoT, cybersecurity became an active and crucial field in the last years. Furthermore, machine learning techniques are gaining more and more attention as prospective tools for mining of (possibly malicious) packet traces and automatic synthesis of network intrusion detection systems. In this work, we propose a modular ensemble of classifiers for spotting malicious attacks on Wi-Fi networks. Each classifier in the ensemble is tailored to characterize a given attack class and is individually optimized by means of a genetic algorithm wrapper with the dual goal of hyper-parameters tuning and retaining only relevant features for a specific attack class. Our approach also considers a novel false alarm management procedure thanks to a proper reliability measure formulation. The proposed system has been tested on the well-known AWID dataset, showing performances comparable with other state of the art works both in terms of accuracy and knowledge discovery capabilities. Our system is also characterized by a modular design of the classification model, allowing to include new possible attack classes in an efficient way.openAccademicoGiuseppe Granato; Alessio Martino; Luca Baldini; Antonello RizziGranato, Giuseppe; Martino, Alessio; Baldini, Luca; Rizzi, Antonell

    Calibration techniques for binary classification problems: A comparative analysis

    Get PDF
    Calibrating a classification system consists in transforming the output scores, which somehow state the confidence of the classifier regarding the predicted output, into proper probability estimates. Having a well-calibrated classifier has a non-negligible impact on many real-world applications, for example decision making systems synthesis for anomaly detection/fault prediction. In such industrial scenarios, risk assessment is certainly related to costs which must be covered. In this paper we review three state-of-the-art calibration techniques (Platt’s Scaling, Isotonic Regression and SplineCalib) and we propose three lightweight procedures based on a plain fitting of the reliability diagram. Computational results show that the three proposed techniques have comparable performances with respect to the three state-of-the-art approaches
    corecore