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Abstract

In this paper we examine the value of investing in energy-efficient household appliances

from both an energy system and end-user perspectives. We consider a set of appli-

ance categories constituting the majority of the electricity consumption in the private

household sector, and focus on the stock of products which need to be replaced. First,

we look at the energy system and investigate whether investing in improved energy

efficiency can compete with the cost of electricity supply from existing or new power

plants. To assess the analysis, Balmorel, a linear optimization model for the heat and

power sectors, has been extended in order to endogenously determine the best possible

investments in more efficient home appliances. Second, we propose a method to relate

the optimal energy system solution to the end-user choices by incorporating consumer

behaviour and electricity price addition due to taxes. The model is non-exclusively

tested on the Danish energy system under different scenarios. Computational experi-

ments show that several energy efficiency measures in the household sector should be

regarded as valuable investments (e.g. an efficient lighting system) while others would

require some form of support to become profitable. The analysis quantifies energy and

economic savings from the consumer side and reveals the impacts on the Danish power

system and surrounding countries. Compared to a business-as-usual energy scenario,

the end-user attains net economic savings in the range of 30–40 EUR per year, and the

system can benefit of an annual electricity demand reduction of 140–150 GWh. The

paper enriches the existing literature about energy efficiency modelling in households,

contributing with novel models, methods, and findings related to the Danish case.
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1. Introduction

In compliance with the recent international effort towards the climate change mitiga-

tion (European Commission 2010), Denmark has set its goals for the year 2020 and is

working to fulfil the targets concerning renewable energy (RE) integration in the system

and energy efficiency (EE) improvements. Compared to the 1990 levels, Denmark has

reduced its greenhouse gas emissions by more than 30% and, according to the current

policies and trends, the Danish Energy Agency forecasts that the reduction will reach

almost 40% by 2020 (Breum 2015), thus exceeding the legally binding EU commitment

of 34%. Denmark can vaunt one of the highest contributions of renewables in any

energy system worldwide (excluding hydro-power), with a 56% contribution in 2014.

In particular, in 2015, more than 40% of the Danish electricity demand was satisfied

by wind energy, and this figure is expected to increase up to 50% by 2020 (Breum

2015). Besides the effort in integrating renewables in the energy system, the Danish

government has set a number of targets for the further development of EE measures.

According to the National 2020 Energy Efficiency Targets, Denmark is aiming to reduce

the primary and final energy consumption by 12.6 and 7.2%, respectively, compared to

2006 (Danish Energy Agency 2014).

Both RE and EE measures have been identified by the European Commission as

the most suitable options to evolve the national energy systems towards greener con-

figurations (European Commission 2012). Nevertheless, if not properly enforced, the

simultaneous implementation of RE and EE can lead to suboptimal investment plan-

ning and missed cost-saving opportunities (Baldini and Klinge Jacobsen 2016). The

challenge is to identify the optimal trade-off between EE levels and power system con-

figurations while exploring future scenarios, i.e. understanding where to invest in order

to obtain the most cost-effective energy system given a target on emissions reduction.

Several studies, for instance, have shown that enhancing EE is likely the most cost-

effective way to reduce carbon emissions in the medium term (López-Peña et al. 2012,

Enkvist et al. 2007).

The literature has then considered the modelling of EE in households along two main

lines: the heat and electricity sectors. Available literature presents many examples from

the Danish heating context, while EE literature from the electricity sector is lacking,

whereby we broaden our perspective.

On the heat sector side, Zvingilaite (2013) models heat savings in the Danish build-

ing sector using a heat and power optimization model, showing that the attainable level
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of heat savings can reach up to 11% of the projected heat demand in 2025. At the time

of publication, the study represented the front-runner implementation of heat savings

as endogenous investment variables in an energy system model, thus providing a first

estimation of the cost-effective heat savings level from a socio-economic perspective.

Several studies target environmental goals as CO2 emission reduction, stressing the

need to identify the trade-off between heat savings and heat supply. Connolly et al.

(2014) examine the joint role of district heating and heat savings to decarbonise the EU

energy system, and conclude that coupling the two measures can help reducing primary

energy supply and CO2 emissions at the lowest costs compared to other alternatives.

Zvingilaite and Klinge Jacobsen (2015) investigate the trade-off between heat savings

and heat generation technologies in the Danish energy system, focusing on the residen-

tial investment behaviour and including health costs. The study reveals that savings

up to 24% of the heat demand can be achieved with an optimal configuration of invest-

ments in heat savings and heat generation technologies. Hansen et al. (2016) estimate

the optimal heat savings investment levels within various European countries. This

level is identified in investments aimed to reduce the projected heat demand of about

30–40%, while supplying the remaining demand with sustainable heat technologies.

On the electricity side, the literature suggests that disaggregating the household

electricity demand into different appliances is the starting point for modelling EE mea-

sures and the attitude of consumers towards them (Lefebvre and Desbiens 2002, Evora

et al. 2011, Batih and Sorapipatana 2016). Rodŕıguez Fernández et al. (2015) pro-

pose the use of machine learning techniques to identify individual electrical devices in

households based on power consumption, so that specific appliances can be targeted for

efficiency improvement. Numerous authors then focused on the trade-off between elec-

tric energy savings in households and power supply with interesting examples, close to

the direction of our work, in an Asian context. Parikh and Parikh (2016) examine the

potential energy and emission savings from choosing energy-efficient home appliances

in India. Based on the 5-star-rating EE promotion programme, the authors modelled

the attitude of consumers (poor and rich) in adopting more efficient appliances. The

results show that, given the awareness of consumers concerning the various options of

efficient appliances, a demand and emission reduction from households exceeding 30%

can be reached in 2030. Batih and Sorapipatana (2016) analyse the electricity consump-

tion of urban households and its saving potential in Indonesia. Similar to the Indian’s

case, the results illustrate how implementing specific EE improvements can lead to a

reduction of 21% of both power demand and CO2 emissions from households by 2030.

Xie et al. (2016) prove that energy management strategies in the Chinese household
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sector should include investments in energy-efficient home appliances. The policy rec-

ommendation is thus in terms of subsidies driving customers to purchase a higher share

of energy-labelled appliances. Mizobuchi and Takeuchi (2016) examine the influence

of an increase in purchasing energy-efficient home appliances on the power system in

Japan. The conclusions are in line with previous studies, showing that households with

new energy-efficient appliances can save a large amount of electricity, but also that the

rebound effect may cancel part of the savings out due to a more intense use of the ap-

pliance. Finally, a few studies consider the contribution of appliances to the household

electricity use with a global scope, illustrating the huge potential of energy efficiency

improvements in the global residential sector (Wada et al. 2012, Cabeza et al. 2014).

As indicated by the consistent amount of literature, in the residential sector lies a

large potential for EE improvements. In Denmark, electricity consumption from private

households exceeds 20% of the total load (Klinge Jacobsen and Juul 2015). This figure

is also expected to increase in the next years due to the upcoming electrification of

the household facilities, and should then be balanced with improvements in energy

efficiency measures (Bartiaux and Gram-Hanssen 2005). The electricity consumption

in the household sector is mainly related to the different home appliances. Therefore,

if electricity savings could be targeted to the different appliance categories, then lower

consumption profiles associated to the households could lead to savings for the system

in terms of necessary power plants, capacity investments and emissions. Furthermore,

the electricity savings may have different effects on the power system depending on the

hourly consumption profile of the appliance category whose demand is reduced.

Using a bottom-up approach (Swan and Ugursal 2009), the analysis proposed in

this paper will make use of hourly consumption profiles of home appliances determined

in previous studies (Klinge Jacobsen and Juul 2015) to investigate the effect of EE

improvements in the Danish energy system. In particular, the aim of this paper is

threefold:

1. to evaluate from a system perspective whether it is worth to invest in more energy-

efficient appliances rather than install new power plants, and observe the effects

on the energy mix;

2. to assess from an end-user perspective which energy-efficient appliance should be

regarded as a profitable investment, taking into account the behavioural dimen-

sion of the consumer;

3. to compare the investment choices of the model according to the system and

consumer perspectives.
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The paper enriches the existing literature about EE modelling in households, contribut-

ing with new models, methods, and findings related to the Danish case.

2. Methodology

2.1 Overview of Balmorel

Balmorel is a linear programming-based optimization model for the energy sector, orig-

inally developed in 2001 to analyse the Baltic system (Balmorel 2015). The model finds

economically efficient dispatches and optimal capacity investments for the energy sys-

tem. The emphasis is on the electricity and combined heat and power (CHP) sectors,

and the major technologies for electricity, heat generation and storage are included in

the model.

The model consists of a set of neighbouring countries that participate in various

electricity markets. Each country is then split into one or more regions, depending on

the market features, where electricity can be traded with constraints. Denmark, for

instance, is modelled using two electricity zones, Denmark East and Denmark West (in

the following DK-E and DK-W), according to the NordPool system. The electricity

transmission between adjacent zones is limited by a given transmission capacity. More-

over, to model the CHP sector, each electricity region is further divided into several

district heating areas.

Time in Balmorel is organized into three step categories: years, seasons (weeks),

and individual time units (hours). Each year is composed of 52 weeks and each season

is, in turn, composed of 168 time units. The time is however flexible and the user can

decide how many seasons and time units to use in the model. The choice depends on the

needs for the specific investigation and typically ranges from weeks, when the focus is

operational, to years, common for investment analyses. The running time of the model

is influenced by the time aggregation used, and varies from minutes to several hours.

The main output is, among others, electricity and heat production levels, electricity

prices, system costs, electricity transmission, and emissions.

Despite being used in the industry (Balmorel 2015), Balmorel has been applied by

the research community to several energy systems worldwide and for a wide range of

purposes, from the integration of renewable technologies in the energy mix, to the anal-

ysis of market conditions, policies implementation, and future role of district heating

in energy systems (Ball et al. 2007, Jensen and Meibom 2008, Karlsson and Meibom
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2008, Münster et al. 2012, Münster and Meibom 2010). Balmorel has also been used

to integrate heat savings and residential investment behaviour into the energy systems

(Zvingilaite 2013, Zvingilaite and Balyk 2014, Zvingilaite and Klinge Jacobsen 2015).

2.2 Modelling investments in household appliances

Consider a set of home appliances i P t1, . . . , Iu, and a set of electricity zones r P

t1, . . . , Ru where we allow investments in energy-efficient appliances (in our study, DK-

E and DK-W). To extend Balmorel with EE investments, we need to introduce first the

following group of parameters. The assumptions behind data and how data is collected

will be topic of the next section.

• ξmax
i � maximum consumption reduction for appliance i with respect to a baseline

new, non-EE appliance of the same type and functionality (kWh/year). For

example, assume that the average consumption for new, non-EE refrigerators is

300 kWh/year, and the average consumption of the most efficient refrigerators, of

same type and functionality, available in the market is 180 kWh/year, then the

maximum annual electricity saving from a refrigerator is ξmax
i � 300 � 180 � 120

kWh/year.

• ci � additional cost of investing in a single appliance i with maximum saving of

ξmax
i (EUR) with respect to the cost of a baseline consumption class. For example,

assume that the baseline refrigerator efficiency class is A with average cost of EUR

650, and the most efficient is A+++ with average cost of EUR 1000, then ci �

EUR 350.

• ρ � discount rate, used to annuitize the investment cost of new appliances. More

comments on the discount rate will follow in the case study.

• Li � average lifetime of appliance i (years). The lifetime is used to annuitize the

investment cost and to approximate the annual substitution rate of the appliances,

by computing 1{Li.

• Nir � estimated number of appliances i in region r. It can be approximated

by multiplying the share of an appliance with the number of households; for

example, if the share of washing machines is 0.80 (items/household) and the

number of households in DK-W is 1.4 mln., then Nir is 0.80 � 1.4 = 1.12 mln.

Our construction of Nir applies if the total stock of appliances is fixed over time,
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as it is for the Danish market where household growth is very low. For developing

economies, such as China or India, Nir should be time-dependent.

• nir � Nir{Li � estimated number of appliances i in region r which are replaced

on average every year (e.g. because they are too old and not well-functioning

anymore). For instance, if the average lifetime of a dishwasher is Li � 10 years

and the existing stock in DK-E is Nir � 1 mln., then approximately nir � 0.1

mln. dishwashers are expected to be purchased in DK-E during a year.

• dirt � gross electricity consumption (MWh) in region r due to the appliance

category i at hour t of the year. We also define the total annual consumption of

appliance i in region r as Dir �
°

t dirt, and we will refer to the collection tdirtut

as the yearly consumption profile of appliance i in region r.

We summarize the set of parameters necessary to implement the model in Table 1.

Table 1: Data required to implement the model extension

Name Description For each

ξmax
i Max. consumption reduction Appliance
ci Extra cost of more efficient appliance Appliance
Li Lifetime of appliance Appliance
Nir Stock of existing home appliances Appliance and region
ρ Discount rate -
dirt Hourly consumption profile Appliance and region

It is now possible to compute the annuitized extra investment cost of a new EE

appliance, cai [EUR], as

cai �
ρ ci

1 � 1{ p1 � ρqLi
.

Then, we define the decision variables xir P r0, 1s as the percentage of new appliances of

type i that are replaced with the most energy-efficient version in region r. In particular,

xir � 0 means that there is no investment in more efficient appliances of category i,

while xir � 1 means that the full amount nir of appliances i in the region is upgraded.

In this case, the system will benefit of an annual electricity saving of ξmax
i nir for the

lifetime of the appliance.

The introduction of investments in EE has two main effects in the energy system

model. First, the investment cost represents a new contribution in the objective func-
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tion, given by

min : SysCost �
I̧

i�1

Ŗ

r�1

cai nir xir (1)

where SysCost is the original objective function in Balmorel representing the total

cost of the energy system, and includes the cost of fuel consumption, operation and

maintenance cost for the different technologies, investment cost in new generation and

storage capacity, emission and fuel taxes, etc. Second, the demand profile is reduced

according to the saving associated with xir. The saving is spread over the whole year

and applies with the same percentage across the consumption profile of the appliance.

We can consequently work hour by hour and, denoting with drt the electricity demand

in region r and time t, we define a new power balance equation

(electricity supply in r at t) � drt �
I̧

i�1

dirt ξ
max
i nir xir
Dir

. (2)

For instance, if there is no investment in EE, meaning xir � 0 for all appliances i, then

the summation term (i.e. the saving) is zero and the equation reduces to the original

one. If the investment is maximum for appliance i, i.e. xir � 1, then the demand is

reduced by a factor dirt ξ
max
i nir{Dir. This amount corresponds to the annual saving

ξmax
i nir from appliance i, scaled with the fraction of total demand Dir occurring in

hour t, dirt {Dir. In line with the other investments in Balmorel, in (2) it is implicitly

assumed that new appliances are purchased and installed in the first hour of the year.

In addition, several studies suggest that the gains achieved from new energy saving

measures are usually slightly lower than what initially expected, due to the so-called

rebound effect (Khazzoom 1980, Carnall et al. 2015, Bulu and Topalli 2011, Shrestha

and Marpaung 2006, Galvin 2010, Farinelli et al. 2005, Galarraga et al. 2013). This

happens because the consumer typically responds to new EE measures in a way that

tends to offset the effects of the changes. In more practical words, if we have a more

efficient appliance or service, we tend to use it more because its use is cheaper, and

we may also purchase additional appliances of the same type. We include the rebound

effect in our model and characterize it as a linear response. Introducing βir P r0, 1s and

indicating with Dr the total yearly electricity demand in region r, we extend (2) with

(electricity supply in r at t) � drt �
I̧

i�1

dirt ξ
max
i nir xir
Dir
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� drt

°I
i�1Dir

Dr

°I
i�1 ξ

max
i βir xir°I

i�1 ξ
max
i

. (3)

Even though the magnitude of the effect might change depending on appliance and

region, in the following we set all variables to be the same (βir � β).

To summarize, investing in efficient household appliances reduces the electricity

consumption as in (3). Less demand implies that less production technologies to operate

or install are needed to supply electricity, which in turn implies lower costs for the

system. The optimization process will then implicitly compare this economic saving

with the investment cost added to (1) and, if convenient, will endogenously trigger the

investment.

2.3 From the energy system to the end-user

The model presented optimizes investments from a system perspective. It is a socio-

economic analysis and does not include taxes on the consumer side. This means that

the solution resulting from the optimization process should be interpreted as the least

expensive solution for the whole energy system, and investments in energy-efficient

appliances implicitly compete with the supply of electricity at the system price, i.e.

wholesale market price. However, the analysis currently disregards a representation of

the end-user choices, which are relevant since in practice investments in home appli-

ances are made by end-users. The consumer pays a higher price for electricity due to

additional taxes on e.g. transmission, distribution, and policy costs for promotion of

renewables. In Denmark, the tax addition to the electricity price is a fixed additive

amount that makes the consumer’s price up to ten times higher than the system price

(Energitilsynet 2016). As a consequence, investments which are not worth for soci-

ety might be actually profitable for the single user, who individually evaluates an EE

investment.

To include the consumer utility in the analysis, we propose the following sequential

approach. First, the consumer observes the annual electricity price profile generated

from the system model and estimates the consumer price by considering an average

overpricing factor. Second, the consumer determines whether investing in more energy-

efficient appliances is profitable by comparing the extra investment cost with the eco-

nomic saving implied by the consumption reduction. Third, the energy system model

is solved for the second time embedding the investment decisions of the consumer. New

electricity prices are generated, and the actual saving on the consumer side is deter-
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mined together with possible changes in the energy system. Figure 1 summarizes the

sequential process.

Figure 1: Sequential process to analyse investment decisions for end-users

Perspective

- Fix investment variables xi

- Run the extended version of Balmorel

1

2

3

System

Consumer

System

4
System and 
consumer

Analyse the results

Electricity
prices P

Run the base version of Balmorel

- Compute consumer price Pc

- Solve consumer investment problem
Consumer 

investments xi

New electricity
prices P2

Action OutputStep

Let us focus on the consumer model. When should a consumer purchase a new

energy-efficient appliance, e.g. a refrigerator? If the refrigerator is well-functioning,

one would generally need some strong incentive to replace it with a more efficient

product. However, as discussed earlier, by introducing a substitution rate we limit the

analysis to the sub-group already needing to replace the given appliance due to capital

depreciation. Thus, the question we try to answer is more specific: I need to purchase

a new refrigerator, should I invest in a very energy-efficient product, paying an extra

cost but having an annual energy saving, or should I buy an average refrigerator similar

to what I had before? A rational consumer would compare the extra investment cost

of the more efficient product with the expected economic saving resulting from the

consumption reduction throughout the appliance lifetime, and would undertake the EE

investment in case of positive net present value (NPV) of cash flows. In particular, we

denote with prt the system price of electricity, which in Balmorel corresponds to the

dual value of the power balance equation, and with γ the average price overcharge on
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the consumer side. The consumer price is then estimated by pcrt � prt�γ, and the NPV

of an EE investment is computed for every appliance i and region r with

NPVir � �ci �
Li̧

y�1

αy

p1 � ρqy�1

�
Ţ

t�1

pcrt dirt ξ
max
i {Dir

�
. (4)

Equation (4) represents the trade-off between extra investment cost and cumulative an-

nual saving. The expression inside brackets is the economic saving for the current year,

calculated by multiplying the consumer price at a given hour t with the consumption

reduction achieved in t, then summing over the whole year (T � 8760 is the number of

hours in a year). This expression is then summed over a number of years corresponding

to the lifetime of the appliance Li, discounted, and multiplied by a factor αy indicating

the expected change (increase or decrease) of electricity prices for year y.

In practice, however, a consumer does not act in a fully economically rational way,

and there are behavioural aspects that may influence the investment decision. The

consumer behaviour is difficult to capture and model since it is by definition subjective.

Previous research tried to quantify the correlation between the propensity to invest in

EE (intended as both housing renovation and the purchase of energy-efficient appli-

ances) and factors like income, age and education (Hausman 1979, Mills and Schleich

2010, Ward et al. 2011, Murray and Mills 2011, Allcott 2011b, Davis and E. Metcalf

2014, Houde 2014, Newell and Siikamäki 2013, Schaffrin and Reibling 2015, Bartiaux

and Gram-Hanssen 2005). Most of the studies agree on a positive correlation between

household’s income and investments level. In contrast, conclusions regarding other fac-

tors (age, education etc.) often show ambiguity and there is generally no statistical

significance in the correlation with investment.

In line with these studies, we include in the model a behavioural uncertainty related

to the household’s income level. A low-income household might not be willing to pay

a high up-front cost for relatively small annual electricity savings. Consequently, even

though the EE investment turns out to be profitable according to (4), it may not be

undertaken because the payback period is too long. The choice also depends on the

other expenses of the households in the same period, i.e. your overall liquidity con-

straints. On the other hand, the up-front investment cost for a high-income household

is typically not a constraint, and, if the EE investment is profitable, then it will be un-

dertaken. It can be seen as a sort of budget constraint and a linear probability model

is used to describe it. Moreover, as suggested by some authors (Allcott 2011b, Ward

et al. 2011, COOPER 2011), the opposite phenomenon is also possible: a high-income

11



consumer may invest in an efficient appliance ‘just’ because it is the green option, also

when the choice is not profitable from a strictly economic perspective. Thus, similarly

as before, we assign a probability of purchasing the energy-efficient appliance when the

investment is not profitable.

The curves in Figure 2 represent the probability of purchasing an energy-efficient

product when economically profitable and when not. They are constructed partly

based on the results from Allcott (2011b), Ward et al. (2011), COOPER (2011) and

partly by using data about income and annual expenditure in appliances by households

from Statistics Denmark (2016). The curves are employed as model assumptions as no

empirical evidence for the functional slope is available in the literature. We also assume

that the curves are not static but dependent on the specific appliance: if the NPV is

positive but the payoff takes many years, then the blue curve shifts down, and vice

versa. In the analysis, we are not incorporating possible variations of the number of

appliances and replacement rate by income class, and we equally split the stock among

the classes.

Figure 2: Probability of purchasing an energy-efficient appliance when economically
profitable (blue line) and when not profitable (red line). On the x -axis are the deciles
of the income distribution of Danish households.
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In reality, the consumer choice is also subject to uncertainty regarding the infor-

mation available (e.g. electricity prices and products on the market) and errors in

computing the economic convenience. This uncertainty is already included in the con-

sumer model, indeed, for instance, the adoption rate of profitable products by the
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highest income class is lower than 100%.

Coming back to the sequential approach, notice that also other authors have in-

corporated consumer classes (income deciles) with different behavioural profiles into

a model which ultimately solves as a system optimization, for example Bunch et al.

(2015). We conclude the section with a few remarks.

1. After new electricity prices are generated, the end-user’s model could be executed

once again leading to a potentially different investment decision. This new deci-

sion could be plugged into the system model, and the sequential approach iterated

until convergence (i.e. when there are no changes in electricity prices between two

iterations). However, in all our experiments the model converged after the first

iteration, thus we neglect the convergence topic in the following discussion.

2. In (4) savings are modelled using flexible electricity pricing. Even though most

of the Danish households currently pay electricity based on a flat tariff (Energi-

tilsynet 2016), in the last few years smart meters have been spreading, reaching

almost 50% of the of the Danish households in 2015 and aiming at 100% for 2020

(Danish Ministry of Energy Utilities and Climate 2013, 2014). With smart meters

and exposition to real-time rates, the adoption of flexible pricing is expected to

quickly increase (Allcott 2011a, Katz et al. 2016, Katz 2014, Krishnamurti et al.

2012, Broman Toft et al. 2014, Faruqui et al. 2010).

3. Case study

The proposed model extension has been tested on the Danish energy system. However,

the test is non-exclusive, and the same analysis could be performed on a different

system, provided that all the input data needed to run the model is available.

3.1 Scenario description

We characterize the scenarios based on three main elements on the input side: simula-

tion year, fuel price forecast, and fuel availability. Two different simulation years are

considered:

• 2015: serves as an ex-post analysis to understand how the known energy system

would have changed if consumer (or society) had invested in EE in an optimal

way. For this case, the system is fully determined exogenously and we do not
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allow investments in new power plants. Thus, the model is in an operational

simulation mode.

• 2025: to assess the saving analysis on a future energy system. For this case, the

energy system is also allowed to evolve by endogenously investing in new power

plants and decommissioning the old and unproductive ones.

To cope with the uncertainty in fuel and emission prices in 2025, following Zvingilaite

(2013) we identify a range of price values presented in Table 2: from a low price scenario

to a high price scenario. The low price scenario has been constructed with the guidelines

of the Danish Energy Agency for future socio-economic analyses (Danish Energy Agency

2016b). The high price scenario is based on the oil price development in Oilprice.com

(2016) and IEA (2016), with the assumption that the high prices for other fuels follow

the price of oil with certain elasticity, as indicated e.g. in Karlsson and Meibom (2008).

The cost of municipal waste is assumed to be negative and constant, since in Denmark,

the waste incineration plants are paid to treat the waste (Münster 2009). Regarding

CO2, the low price scenario is based on the carbon trading price, which in fall 2009 was

around 15 EUR/t (Reuters 2016), whereas the high price scenario is based on the IPCC

considerations (Ipcc 2007). In the table, we also report the average price scenario.

Table 2: Prices of fuels and emissions in 2025 according to different scenarios. Prices
for renewable sources, e.g. wind, sun and hydro, are assumed to be zero.

Low price Average price High price
(EUR/GJ) (EUR/GJ) (EUR/GJ)

Fuel oil 13.33 17.24 21.14
Natural gas 12.01 15.02 18.02
Municipal waste �3.60 �3.60 �3.60
Coal 5.05 6.97 8.89
Wood pellets 12.25 13.03 13.82
Straw 7.69 8.47 9.25
CO2 [EUR/t] 18.02 39.04 60.07

In addition, we model availability constraints on the main input fuel sources for

2025. The limitations are decided according to the 4 degree scenario proposed by the

IEA in the Nordic Energy Technology Perspective (IEA 2016). Table 3 reports the

most relevant values.
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Table 3: Fuel availability for 2025 (fuel input for power, heat and CHP plants), NETP
(IEA 2016)

DK SE NO FI

Coal (PJ) 99.2 9.4 0.0 87.8

Oil (PJ) 1.9 4.4 0.1 1.7

Gas (PJ) 21.4 3.6 0.0 34.8

The scenarios are tested using four representative weeks of the year (weekw 09, 22,

32, and 51), where each week is composed by the full hourly resolution (168 h), giving a

total of 672 time steps for the simulation. In this way, we are able to obtain sufficiently

accurate results, keeping the size of the model and its running time limited. The hourly

resolution is needed here to entirely capture the differences of consumption profiles of

the various home appliances.

3.2 Relevant parameters

A set of input data for each of the two Danish electricity zones must be collected. In

Table 4 we report some of the most relevant parameters along with the reference.

Table 4: Relevant model parameters: values and references

Data Zone Value Source

Electricity demand (TWh) DK-E 13.70 NordPoolSpot (2016)
Electricity demand (TWh) DK-W 20.44 NordPoolSpot (2016)
Number of households (mln.) DK-E 1.15 Statistics Denmark (2016)
Number of households (mln.) DK-W 1.41 Statistics Denmark (2016)
Electricity tax addition (EUR/MWh) DK 265 Energitilsynet (2016)
Discount rate (%) DK 3 Danmark NationalBank (2016)
Rebound effect (%) DK 3 Nässén and Holmberg (2009)

Nowadays, the risk-free investment rate in Denmark is very close to zero (Danmark

NationalBank 2016). However, in our analysis we also account for the expected uncer-

tainty from EE investments (given e.g. fuel price volatility and regulatory uncertainty).

Therefore, ρ is increased and set equal to 3%, like the value used in Zvingilaite (2013)

for heat saving investments in Denmark. The magnitude of the rebound effect related

to EE, a debated topic in the literature, can vary from moderate to negligible levels

depending on the analysis. In our model, we use a rebound effect level of 3% related
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to household electric appliances (Nässén and Holmberg 2009). The tax addition to the

electricity system price in Denmark is estimated to be 265 EUR/MWh according to

Energitilsynet (2016), and is expected to remain stable in the near future.

3.3 Appliances data

We selected the subset of 11 home appliance categories listed in Table 5. This set is

chosen for several reasons. First of all these devices, together, constitute approximately

80% of the electricity demand of the private household sector in Denmark; hence,

they are the most interesting to study from an energy consumption perspective. The

electricity demand of residential air-conditioning systems, for instance, is negligible in

the Danish context, and such appliance is therefore excluded from the study. Second,

given the high energy consumption of the chosen appliances, the price of purchasing a

new product reflects in a good extent its efficiency: when buying e.g. a new refrigerator

of a given volume, the energy use of the product is typically the main factor driving

the choice. On the other hand, for more high-tech appliances such as desktops, laptops,

and printers, this is generally not true, and price difference between two products or

brands is given by the functionalities rather than the consumption. Third, most of the

selected appliances fall under the EU energy labelling programme, therefore it is easier

to collect the relevant data and assess the relationship between price and efficiency.

Table 5: List of household appliances considered in the analysis. The second and third
columns refer to the annual consumption reduction and extra cost with respect to an
average consumption class.

Appliance category Saving [kWh/y] ∆ cost [EUR] lifetime [years]

Stand-alone refrigerator 50 413 15
Stand-alone freezer 88 138 20
Refrigerator-freezer 152 605 17
Washing machine 109 242 12
Dish washer 65 572 10
Dryer 118 605 13
Lighting living room 29 9 6
Lighting secondary rooms 25 9 7
Cooker 52 435 12
TV LCD 24 243 7
Vacuum cleaner 11 130 7
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The saving and cost data in Table 5 are averages over different products and brands,

but with same volume or size, taken from some of the major producers and retailers

active in Denmark (Bosch, Siemens, Electrolux, Miele, Aeg etc.). In the table, cooker

refers to both electric hobs and electric baking oven. The lighting system is split in

two components to account for the different use: one main room (living room) with an

higher usage and the other secondary rooms. The extra cost is generally rather high

since we model investments in appliances with the highest available efficiency class (e.g.

A++ or A+++). Limiting the investment analysis to Denmark, we assume there are

no differences in the performance or cost characteristics of existing or new appliances

between the two regions DK-E and DK-W.

The presented model uses linear cost-efficiency relations for appliances, i.e. the pur-

chasing cost of an appliance grows linearly with the consumption reduction. In prac-

tice, there may be differences between the appliances and more complex cost-efficiency

relations. However, the data collected supports the assumption that a linear fitting

describes the relation sufficiently well for our purposes. Figure 3 illustrates the cost-

efficiency relation for two sample appliances.

Figure 3: Cost-efficiency relations for refrigerators (left) and dishwashers (right), classes
A+ to A+++. The dots represent average cost and consumption of a number of
products of the same efficiency class; the blue line is the linear interpolation between
them.
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Regarding demand profiles, we rely on the results from Klinge Jacobsen and Juul (2015)

who investigated the electricity consumption of a typical Danish household and deter-

mined consumption profiles for each appliance category. The profiles of the 11 appli-

ances included in the analysis are illustrated in Figure 4, summing DK-E and DK-W.
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As expected, the profile changes considerably between the different categories. For

example, the cold appliances (refrigerator, freezer) manifest a fairly flat profile while

other appliances like lighting more contribute to the peaks, especially during the evening

hours. Differences can be also found between working days and weekend: in the week-

end the kitchen equipment is used more, in particular during lunch hours, and the use

of the vacuum cleaner is higher too.

Figure 4: Electricity consumption profile during a sample week (week 09) of the 11
home appliances included in the analysis.
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In Figure 5, we show how the aggregated profile of the 11 appliances contributes to the

total electricity demand of households and of all sectors in Denmark.

4. Results and discussion

A sensitivity analysis of the model using fuel and CO2 costs for 2025 reported in Table 2

was made, resulting in similar electricity prices prt (although a different capacity mix

is installed). This limited local sensitivity to scenario prices occurs because, given the

replacement rate, only a small component of the energy demand is affected by the EE

investments. As a consequence, we noticed no or very little change in the consumer

choices (but different CO2 implications) and, throughout the section, we will present

the results for the average cost scenario for 2025.

18



Figure 5: Aggregated profile of the 11 appliances compared to the total electricity
demand in a sample week (week 09)
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4.1 Preliminary check

The driver for the investment choice lies in the economic profitability of adopting a

particular appliance, based on the cumulative savings achieved during its entire lifetime.

To get a first idea of the potential of investing in the different appliances, in Figure 6,

we compute the amount of energy per unit that could be saved if an EE investment of

1 EUR is made in one of the examined appliances.

As can be seen, the gap between lighting and other appliances is large: investing 1

EUR in lights results in an annual saving of around 3 kWh, while for other appliances it

ranges from 0.1 to 0.6 kWh, i.e. an order of magnitude lower. Excluding lighting, from

the picture, it emerges that freezer and washing machine provide the best saving per

unit investment, compared to the rest of the stock. Although Figure 6 gives a picture

of the potential benefit of investing in the different devices, the final investment choices

also depend on the hourly electricity price and the consumption profile of each specific

appliance.

4.2 EE investments

The investments in EE appliances resulting from the simulations are shown in Figure 7.

The left graph illustrates the optimal levels when the system model with endogenous

investments is used, whereas the right graph represents the consumer choices after the
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Figure 6: Annual electricity saving per 1-EUR investment.
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sequential model is run. In the following, the values for DK-E and DK-W are presented

as merged, even though they are separate zones from a model logic.

Figure 7: Investments in efficient appliances with the system model (left) and consumer
model (right). The amount on the x -axis corresponds only to the extra cost with respect
to the baseline efficiency class, and not to the overall investment cost in new appliances.
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When the system is considered, the economic/energy saving criterion shows that

the only EE investments worth doing are efficient lighting replacements. For 2025,
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the investment level in lighting for the living room is higher than 2015 due to the

corresponding higher system prices of electricity for that year. This price difference

develops because the system prices for the future energy system include long-term

investments in renewable technologies and other system adjustments. Finally, given

the lower saving per unit cost, no investment in other EE appliances is triggered during

the optimization process.

In contrast, the end-user economic convenience is based on the consumer electric-

ity price and more diversified investments occur. Due to the consumer’s behavioural

dimension and the incompleteness of information, however, not all investments with

positive NPV are undertaken, and vice versa, some investments in appliances with neg-

ative NPV occur. For instance, the investment level in lighting for secondary rooms

(NPV¡ 0) are lower than 100% (as they are in the system model), and some invest-

ments in EE refrigerators (NPV  0) take place. The consumer investments in EE

exceed the system investments by 95 mln. EUR in 2015 and 105 mln. EUR in 2025.

Overall, the two years investigated show small differences in consumer choices, and

investments in 2025 are only slightly higher than those in 2015. Indeed, even if the

system prices of electricity are higher in 2025, the additive nature of the tax com-

ponent makes the difference perceived by consumers less pronounced. The combined

refrigerator-freezer represents an exception; in fact, the NPV becomes positive for some

consumer classes between the two years, leading to a substantial increase for 2025.

To better understand the results, in Figure 8, we compare the lifetime of a new and

more efficient household electric device with the discounted payback period (DPP) of

its extra investment cost, i.e. the time needed for the EE investment to break even. As

can be seen, the DPP of an efficient lighting is approximately 1 year, for freezer and

washing machine, it is about 5 and 8 years, respectively, and for all other appliances,

it is longer than 15 years. For a rational consumer with no liquidity constraints, an

investment is deemed worthy if the DPP is lower than the lifetime of the appliance,

meaning that the appliance will be paid-off before the end of its expected lifetime (this

is the same to having a positive NPV). The analysis shows that this criterion applies

for lights, stand-alone freezers, washing machines, and combined refrigerator-freezers

which are at the borderline. Specifically, one can notice that, although similar savings

can be achieved with efficient washing machines and dryers (Table 5), the investment

profitability differs substantially. Indeed, the most energy-efficient dryers are still very

expensive, and the extra investment cost is higher than in washing machines. Moreover,

among the cold appliances, we notice that the profitability of EE freezers is higher than

that of EE refrigerators.
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Figure 8: Lifetime versus discounted payback period (discount rate 3%) in the consumer
perspective.
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Table 6: Summary table for the scenarios analysis, 2015 and 2025

Investments Investments Economic savings Electricity
[K units] [mln. EUR] [mln. EUR] savings [GWh/y]

Appliance 2015 2025 2015 2025 2015 2025 2015 2025

Refrigerator 15.4 15.4 6.3 6.3 0.22 0.25 0.77 0.77
Refr.-freez. 9.0 42.2 5.5 25.5 0.40 2.13 1.37 6.42
Freezer 54.6 54.7 7.5 7.6 1.39 1.60 4.80 4.82
Wash.mach. 117.0 117.3 28.3 28.4 3.71 4.33 12.76 12.79
Dish washer 26.5 26.5 15.1 15.1 0.50 0.58 1.72 1.72
Dryer 15.4 15.4 10.4 10.4 0.53 0.61 1.81 1.81
Light L.R. 1892 1904 17.5 17.6 16.00 19.03 54.87 55.23
Light S.R. 2423 2438 22.4 22.6 17.67 20.97 60.57 60.95
Cooker 31.4 31.4 13.6 13.6 0.47 0.56 1.63 1.63
TV LCD 27.4 27.4 6.7 6.7 0.19 0.22 0.66 0.66
Vacuum cl. 38.4 38.4 5.0 2.2 0.12 0.14 0.42 0.42

Total 4650 4711 138.3 156.0 41.2 50.4 141.4 147.2

In Table 6, we report the details of the investments, quantifying the adoption and

effectiveness of energy-efficient appliances. Consider for instance 2015: with an up-front
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extra cost of 138 mln. EUR, the resulting energy and economic savings is 141 GWh

and 41 mln. EUR per year respectively. Including the lifetime of the appliances and the

discounting, this translates into revenues of 222 mln. EUR, i.e. a net discounted saving

equal to 84 mln. EUR for Danish consumers investing in energy-efficient appliances

(similar for 2025).

In Table 7, we report the analysis of the benefits on the consumer side, highlighting

the annual economic and energy savings resulting from the investments. The saving for

2025 is slightly higher because of the higher electricity prices. Notice that the saving is

spread over the entire Danish population, disregarding the fact that only a portion of

it is actually replacing a given appliance.

Table 7: Average electricity and economic saving for Danish households

Extra-investment Annual electricity Annual economic Net economic
Year costs (EUR) saving (kWh/year) saving (EUR/year) saving (EUR/year)

2015 54.0 55.2 16.1 32.5
2025 62.0 57.5 19.7 44.2

In the methodology section, we discussed the ability to afford investments according

to the income class. In Figure 9, we illustrate the investment levels for each appliance

disaggregated per class. The graph shows that the higher the income, the higher the

share of the investment, reflecting the trends defined in the linear consumer model of

Figure 2.
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Figure 9: Investments in energy-efficient appliances according to the income class (2025)
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4.3 System changes and comparison of perspectives

One of the main purposes of modelling the consumer behaviour is to determine its

impact on the energy system. To assess the changes, we focus on two key parameters,

CO2 emissions and electricity demand reduction, and summarize the results in Table 8.

Table 8: Total electricity and CO2 savings.

Electricity savings CO2 savings

Amount % house- % DK Amount % system % DK
(GWh) holds DK (Kton CO2)

2015 Sys 123 1.88 0.38 83.7 0.020 0.34
2015 Cons 141 2.15 0.43 117.2 0.030 0.48
2025 Sys 157 2.44 0.49 32.8 0.017 0.87
2025 Cons 147 2.29 0.46 19.2 0.010 0.51

For 2015, we notice that introducing a consumer model leads to higher electricity sav-

ings compared to the optimal system investments (141 GWh vs. 123 GWh). With the

implemented savings, Denmark could cut its CO2 emissions of almost 0.48% according

to the consumer model. Although this percentage seems small, the reader should keep
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in mind that a similar saving will occur in the years succeeding the investment. Con-

sidering the lifetime of the appliances and the substitution rate of the yearly stock, the

cumulative savings will result higher in the long term.

A different configuration emerges for 2025 where the level of electricity savings

achieved in both models is higher than that in 2015. Nevertheless, the total amount of

CO2 reduction is lower. Indeed, the future energy system in 2025 will be highly based

on renewable energy sources, especially wind, and several fossil fuels power plants will

be decommissioned by then. Although the emissions reduction is lower, we notice that

in percentage we obtained a CO2 cut of almost 1%, implying a larger impact of the

savings on the system. Moreover, for 2025, the savings achieved are higher in the system

perspective. Indeed, in the system model, more investments in lights take place which,

as shown in Figure 6, contribute more effectively to the electricity demand reduction.

Figure 10: CO2 emissions reduction in 2015 (left) and 2025 (right).
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Figure 10 provides a graphical representation of the emissions reduction divided by

country. It is interesting to see that, although a demand reduction via EE was imple-

mented in the model only for Denmark, the decrease in CO2 emission takes place in

several other countries connected with Denmark. This highlights the influence of the

interconnections between countries and proves that changes occurring in the Danish

system have an impact on the electricity production not only of Denmark itself but

also of the other countries. For 2015, the largest emissions reduction occurs in Ger-

many, where the simulation shows that future use of nuclear, natural gas, coal, and

lignite decreases while the power production from wind, wood pellets, and municipal

waste increases. Denmark comes after together with Finland; energy mix highly based

on hydro and nuclear power, as Norway and Sweden, is not greatly influenced by small

changes in the demand of a surrounding country. For 2025, instead, Denmark con-
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tributes more to the total CO2 emissions reduction with 55 and 74% for the system and

consumer perspectives, respectively.

The EE investments also affects the electricity consumption profile, as reported in

Figure 11 for a sample week. The two different models, system and consumer, influence

the demand in diverse ways. As can be noticed, the investments in the system model

are entirely based on lights and mainly contributes to reducing the peaks. This is

also in line with results from previous studies (Klinge Jacobsen and Juul 2015). In

contrast, being the consumer’s investments more diversified, the demand is reduced

homogeneously through the year, including hours outside peak loads.
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Figure 11: Electricity demand after system and consumer investment models (week 09,
day 1).

Even though investments are generally higher and more variegated for the consumer

model, the overall demand reduction is similar in the two cases. In fact, the slightly

higher investment in efficient lighting for the system model results in total savings

comparable to that of all the other appliances chosen by consumers together.
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5. Conclusions

The goal of this paper was to investigate the value of investments in more energy-

efficient home appliances compared to a business-as-usual electricity supply scenario.

Two different perspectives have been examined: energy system and end-user. When

the system is given the possibility to invest in efficient appliances, only investments in

the lighting sector take place. In contrast, when the consumer has the choice, the

investments are more diversified and generally higher. This highlights the different se-

lection criteria for the two models: the system considers purely economical convenience,

whereas for consumers a behavioural dimension comes into play. Moreover, two main

factors have been considered when modelling the choices of the end-users: economic

profitability and ‘green investments’ propensity according to the income class. This

last component, together with the different electricity prices, represents the reason for

the diverse investments compared to the system perspective.

The findings presented in the paper are the result of a soft-linking between a well-

known energy system model and a consumer-behaviour model designed for the study.

The interactions between the two models is the key for understanding the impact of

the consumer choices on the energy system. When compared to a business-as-usual

energy scenario, with the investment solution resulting from the model, the end-user

ends up on average with a net economic savings in the range of 30–40 EUR per year.

Moreover, the system benefits of a total electricity savings of 141 GWh in 2015 and 147

GWh in 2025, and CO2 emission reduction of 117 Kton in 2015 and 19 Kton in 2025.

Because of the international interconnections and energy markets, changes in the energy

system (e.g. in installed capacity, fuel consumption, emissions) occur not only in the

country the consumer belongs to, but also in the surrounding countries. The decision

of a single consumer, thus, contributes to the diversification and transformation of the

global energy system.

The study also reveals the potential appliances that will be attractive from a system

perspective and, despite the simplicity of the consumer choice model, it provides a

first indication of the profitability of investments for private consumers. The closing

considerations have highlighted the relevance of this analysis for a country that is aiming

at important targets in terms of environmental issues. Therefore, this study should be

pushed forwards.
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5.1 Future work

The presented study could be extended in several key directions. One way is to include

a more sophisticated consumer behaviour into the investment decision function. The

data from a survey conducted from the Danish Energy Agency 1 over a representing

set of houses serve as the starting point for the new thorough analysis. Using this

dataset, an exclusive, latent class logistic model could be employed to categorize the

consumers into subsets with respective propensities to purchase (Shen and Saijo 2009,

Murray and Mills 2011, Mills and Schleich 2010). This could also help to better assess

the functional slope of the purchase propensity by income class proposed in this paper.

Using different discount rates could also be a natural way to incorporate several of the

behavioural differences that are noted between consumer income classes. Of additional

interest, Danish specific data and appliance purchasing behaviour is currently under

investigation by UserTEC (2016) and could potentially be included. The end goal

intended is then to incorporate the consumer categories into Balmorel to compute a

more realistic energy savings scenario.

Additionally, this analysis can be extended to re-examine the efficacy of Denmark’s

imposed policies (i.e. EU driven energy labelling programme and overall energy ef-

ficiency targets). Analyses in 2013 (Danish Energy Agency 2016a) predicted savings

of 5640 GWh/year by the year 2020 as a result of ecodesign requirements and the la-

belling programme. With updated data on actual adoption, these projections can be

re-examined. Additionally, these propensity estimates can inform investigation into the

potential benefits of energy-efficient appliance support schemes.

Another avenue could be to explore the interaction and/or trade-off between reduced

consumption and smart consumption. Indeed, in a decentralized system, EE means

not only energy consumption reduction anymore, but also smart energy consumption.

Denmark is still committed to equipping every household with a smart electricity meter

by 2020. Despite much interest in intelligent demand response, such a sporadic system

could diminish the service aspect of energy use. Thus, a comparative analysis into

the savings provided by smart use versus efficient investment could be explored via

Balmorel.

1At the time of the article writing (October 2016), this data is not available and is expected to be
released in the upcoming months.
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