35 research outputs found

    Animals and Fungi are Each Other's Closest Relatives: Congruent Evidence from Multiple Proteins

    Get PDF
    Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from 25 proteins. Four insertions/deletions were found that are shared by two of the three taxonomic groups in question, and all four are uniquely shared by animals and fungi relative to plants, protists, and bacteria. These include a 12-amino acid insertion in translation elongation factor la and three small gaps in enolase. Maximum-parsimony trees were constructed from published data for four of the most broadly sequenced of the 25 proteins, actin, a-tubulin, ,ß-tubulin, and elongation factor la, with the latter supplemented by three new outgroup sequences. All four proteins place animals and fungi together as a monophyletic group to the exclusion of plants and a broad diversity of protists. In all cases, bootstrap analyses show no support for either an animal-plant or hfngal-plant dade. This congruence among multiple lines of evidence strongly suggests, in contrast to traditional and current classification, that animals and fungi are sister groups while plants constitute an independent evolutionary lineage

    Origin and evolution of the slime molds (Mycetozoa)

    Get PDF
    The Mycetozoa include the cellular (dictyostelid), acellular (myxogastrid), and protostelid slime molds. However, available molecular data are in disagreement on both the monophyly and phylogenetic position of the group. Ribosomal RNA trees show the myxogastrid and dictyostelid slime molds as unrelated early branching lineages, but actin and ß-tubulin trees place them together as a single coherent (monophyletic) group, closely related to the animal–fungal clade. We have sequenced the elongation factor-1a genes from one member of each division of the Mycetozoa, including Dictyostelium discoideum, for which cDNA sequences were previously available. Phylogenetic analyses of these sequences strongly support a monophyletic Mycetozoa, with the myxogastrid and dictyostelid slime molds most closely related to each other. All phylogenetic methods used also place this coherent Mycetozoan assemblage as emerging among the multicellular eukaryotes, tentatively supported as more closely related to animals + fungi than are green plants. With our data there are now three proteins that consistently support a monophyletic Mycetozoa and at least four that place these taxa within the ‘‘crown’’ of the eukaryote tree. We suggest that ribosomal RNA data should be more closely examined with regard to these questions, and we emphasize the importance of developing multiple sequence data sets

    The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny

    Get PDF
    The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly

    Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae

    Get PDF
    Previous work suggested that the tufA gene, encoding protein synthesis elongation factor Tu, was transferred from the chloroplast to the nucleus within the green algal lineage giving rise to land plants. In this report we investigate the timing and mode of transfer by examining chloroplast and nuclear DNA from the three major classes of green algae, with emphasis on the class Charophyceae, the proposed sister group to land plants. Filter hybridizations reveal a chloroplast tufA gene in all Ulvophyceae and Chlorophyceae, and in some but not all Charophyceae. One charophycean alga, Coleochaete orbicularis, is shown to contain an intact but highly divergent chloroplast tufA gene, whose product is predicted to be nonfunctional in protein synthesis. We propose that a copy of the tufA gene was functionally transferred from the chloroplast to the nucleus early in the evolution of the Charophyceae, with chloroplast copies of varying function being retained in some but not all of the subsequently diverging lineages. This proposal is supported by the demonstration of multiple tufA-like sequences in Coleochaete nuclear DNA and in nuclear DNA from all other Charophyceae examined

    The deep roots of eukaryotes

    No full text
    Most cultivated and characterized eukaryotes can be confidently assigned to one of eight major groups. After a few false starts, we are beginning to resolve relationships among these major groups as well. However, recent developments are radically revising this picture again, particularly (i)the discovery of the likely antiquity and taxonomic diversity of ultrasmall eukaryotes, and (ii)a fundamental rethinking of the position of the root. Together these data suggest major gaps in our understanding simply of what eukaryotes are or, when it comes to the tree, even which end is up

    The protistan origins of animals and fungi

    No full text
    Recent molecular studies suggest that Opisthokonta, the eukaryotic supergroup including animals and fungi, should be expanded to include a diverse collection of primitively single-celled eukaryotes previously classified as Protozoa. These taxa include corallochytreans, nucleariids, ministeriids, choanoflagellates, and ichthyosporeans. Assignment of many of these taxa to Opisthokonta remains uncorroborated as it is based solely on small subunit ribosomal RNA trees lacking resolution and significant bootstrap support for critical nodes. Therefore, important details of the phylogenetic relationships of these putative opisthokonts with each other and with animals and fungi remain unclear. We have sequenced elongation factor 1-alpha (EF-1), actin, ß-tubulin, and HSP70, and/or -tubulin from representatives of each of the proposed protistan opisthokont lineages, constituting the first protein-coding gene data for some of them. Our results show that members of all opisthokont protist groups encode a 12-amino acid insertion in EF-1, previously found exclusively in animals and fungi. Phylogenetic analyses of combined multigene data sets including a diverse set of opisthokont and nonopisthokont taxa place all of the proposed opisthokont protists unequivocally in an exclusive clade with animals and fungi. Within this clade, the nucleariid appears as the closest sister taxon to fungi, while the corallochytrean and ichthyosporean form a group which, together with the ministeriid and choanoflagellates, form two to three separate sister lineages to animals. These results further establish Opisthokonta as a bona fide taxonomic group and suggest that any further testing of the legitimacy of this taxon should, at the least, include data from opisthokont protists. Our results also underline the critical position of these "animal-fungal allies" with respect to the origin and early evolution of animals and fungi

    A Privacy Protection Scheme for a Scalable Control Method in Context-Dependent Services

    No full text

    The tree of life: An overview

    No full text
    corecore