7 research outputs found

    Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion

    Get PDF
    In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox) providing good results in reducing cardiac, hepatic and endocrine toxicity. These practice guidelines, prepared by the Scientific Committee of Associação Brasileira de Thalassemia (ABRASTA), presents a review of the literature regarding iron overload assessment (by imaging and laboratory exams) and the role of T2* magnetic resonance imaging (MRI) to control iron overload and iron chelation therapy, with evidence-based recommendations for each clinical situation. Based on this review, the authors propose an iron chelation protocol for patients with thalassemia under regular transfusions

    Pancreatic iron stores assessed by magnetic resonance imaging (MRI) in beta thalassemic patients

    No full text
    Purpose: To assess the correlation between MRI findings of the pancreas with those of the heart and liver in patients with beta thalassemia; to compare the pancreas T2* MRI results with glucose and ferritin levels and labile plasma iron (LPI). Materials and methods: We retrospectively evaluated chronically transfused patients, testing glucose with enzymatic tests, serum ferritin with chemiluminescence, LPI with cellular fluorescence, and T2* MRI to assess iron content in the heart, liver, and pancreas. MRI results were compared with one another and with serum glucose, ferritin, and LPI. Liver iron concentration (LIC) was determined in 11 patients' liver biopsies by atomic absorption spectrometry. Results: 289 MRI studies were available from 115 patients during the period studied. 9.4% of patients had overt diabetes and an additional 16% of patients had impaired fasting glucose. Both pancreatic and cardiac R2* had predictive power (p < 0.0001) for identifying diabetes. Cardiac and pancreatic R2* were modestly correlated with one another (r(2) = 0.20, p < 0.0001). Both were weakly correlated with LIC (r(2) = 0.09, p < 0.0001 for both) and serum ferritin (r(2) = 0.14, p < 0.0001 and r(2) = 0.03, p < 0.02, respectively). None of the three served as a screening tool for single observations. There is a strong log-log, or power-law, relationship between ratio of signal intensity (SIR) values and pancreas R2* with an r(2) of 0.91. Conclusions: Pancreatic iron overload can be assessed by MRI, but siderosis in other organs did not correlate significantly with pancreatic hemosiderosis. (C) 2011 Elsevier Ireland Ltd. All rights reserved.Brazilian Ministry of HealthBrazilian Ministry of Healt

    Iron overload in Brazilian thalassemic patients

    No full text
    Objectives: To evaluate the use of magnetic resonance imaging inpatients with β-thalassemia and to compare T2* magnetic resonanceimaging results with serum ferritin levels and the redox active fraction of labile plasma iron. Methods: We have retrospectively evaluated 115 chronically transfused patients (65 women). We tested serum ferritin with chemiluminescence, fraction of labile plasma iron by cellular fluorescence and used T2* MRI to assess iron content in the heart, liver, and pancreas. Hepatic iron concentration was determined in liver biopsies of 11 patients and the results were compared with liver T2* magnetic resonance imaging. Results: The mean serum ferritin was 2,676.5 +/- 2,051.7 ng/mL. A fraction of labile plasma iron was abnormal (> 0,6 Units/mL) in 48/83 patients (57%). The mean liver T2* value was 3.91 ± 3.95 ms, suggesting liver siderosis in most patients (92.1%). The mean myocardial T2* value was 24.96 ± 14.17 ms and the incidence of cardiac siderosis (T2* < 20 ms) was 36%, of which 19% (22/115) were severe cases (T2* < 10 ms). The mean pancreas T2* value was 11.12 ± 11.20 ms, and 83.5% of patients had pancreatic iron deposition (T2* < 21 ms). There was significant curvilinear and inverse correlation between liver T2* magnetic resonance imaging and hepatic iron concentration (r= -0.878; p < 0.001) and moderate correlation between pancreas and myocardial T2* MRI (r = 0.546; p < 0.0001). Conclusion: A high rate of hepatic, pancreatic and cardiac impairment by iron overload was demonstrated. Ferritin levels could not predict liver, heart or pancreas iron overload as measured by T2* magnetic resonance imaging. There was no correlation between liver, pancreas, liver and myocardial iron overload, neither between ferritin and fraction of labile plasma iron with liver, heart and pancreas T2* values
    corecore