61 research outputs found

    Trypanosoma brucei Glycogen Synthase Kinase-3, A Target for Anti-Trypanosomal Drug Development: A Public-Private Partnership to Identify Novel Leads

    Get PDF
    Over 60 million people in sub-Saharan Africa are at risk of infection with the parasite Trypanosoma brucei which causes Human African Trypanosomiasis (HAT), also known as sleeping sickness. The disease results in systemic and neurological disability to its victims. At present, only four drugs are available for treatment of HAT. However, these drugs are expensive, limited in efficacy and are severely toxic, hence the need to develop new therapies. Previously, the short TbruGSK-3 short has been validated as a potential target for developing new drugs against HAT. Because this enzyme has also been pursued as a drug target for other diseases, several inhibitors are available for screening against the parasite enzyme. Here we present the results of screening over 16,000 inhibitors of human GSK-3β (HsGSK-3) from the Pfizer compound collection against TbruGSK-3 short. The resulting active compounds were tested for selectivity versus HsGSK-3β and a panel of human kinases, as well as their ability to inhibit proliferation of the parasite in vitro. We have identified attractive compounds that now form potential starting points for drug discovery against HAT. This is an example of how a tripartite partnership involving pharmaceutical industries, academic institutions and non-government organisations such as WHO TDR, can stimulate research for neglected diseases

    “Control-Alt-Delete”: Rebooting Solutions for the E-Waste Problem

    Full text link
    A number of efforts have been launched to solve the global electronic waste (e-waste) problem. The efficiency of e-waste recycling is subject to variable national legislation, technical capacity, consumer participation, and even detoxification. E-waste management activities result in procedural irregularities and risk disparities across national boundaries. We review these variables to reveal opportunities for research and policy to reduce the risks from accumulating e-waste and ineffective recycling. Full regulation and consumer participation should be controlled and reinforced to improve local e-waste system. Aiming at standardizing best practice, we alter and identify modular recycling process and infrastructure in eco-industrial parks that will be expectantly effective in countries and regions to handle the similar e-waste stream. Toxicity can be deleted through material substitution and detoxification during the life cycle of electronics. Based on the idea of "Control-Alt-Delete", four patterns of the way forward for global e-waste recycling are proposed to meet a variety of local situations

    Recovery of metals from waste electrical and electronic equipment (WEEE) using unconventional solvents based on ionic liquids

    Get PDF
    International audienceWaste electrical and electronic equipment (WEEE) is the fastest growing type of waste globally and is an important challenge due to its heterogeneity, intrinsic toxicity and potential environmental impact. However, WEEE also represents an important secondary source of critical and valuable elements and must be viewed as a resource within the context of a circular economy. The use of ionic liquids (ILs) to recover metals from WEEE is reviewed with a special emphasis on the use of ILs in leaching and solvent extraction processes. The advantages of ILs as a reaction medium compared to existing conventional solvents lies in their tuneability and potential environmental benefits. Many studies have used ILs for the selective extraction and purification of metals from WEEE, particularly from waste fluorescent lamp phosphor and batteries containing rare-earth elements with promising results. However, significant barriers remain to the commercial use of ILs for treating WEEE and key barriers to progress are identified. In particular more focus is required to improve upstream collection and separation of WEEE, as this would greatly increase the potential to use selective, more efficient, ILs for metal recovery
    corecore