23 research outputs found

    Prior optic neuritis detection on peripapillary ring scans using deep learning

    Get PDF
    BACKGROUND: The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack. OBJECTIVE: To investigate whether a deep learning (DL)-based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans. METHODS: We included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance. RESULTS: We used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84. INTERPRETATION: DL-based disease classification of prior ON is feasible and has the potential to outperform thickness-based classification of eyes with and without history of prior ON

    APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies

    Get PDF
    OBJECTIVE: To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS: To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms “quantitative” and “optical coherence tomography” from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts, and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS: One hundred sixteen authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point-checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans; we suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants’ consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS: The modified Delphi method resulted in an expert-led guideline (evidence class III, GRADE criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, fundoscopic imaging, post-acquisition data selection, post-acquisition analysis, nomenclature and abbreviations, and statistical approach. It will still be essential to update these recommendations to new research and practices regularly

    The International Multiple Sclerosis Visual System Consortium: advancing visual system research in multiple sclerosis

    Get PDF
    BACKGROUND: The International Multiple Sclerosis Visual System Consortium (IMSVISUAL) was formed in November 2014 with the primary goal of improving research, care, and education regarding the role of the visual system in multiple sclerosis (MS) and related disorders. METHODS: In this review, we describe the formation, goals, activities, and structure of IMSVISUAL, as well as the relationship of IMSVISUAL with the Americas Committee for Treatment and Research in MS (ACTRIMS). Finally, we provide an overview of the work IMSVISUAL has completed to date, as well as an outline of research projects ongoing under the auspices of IMSVISUAL. RESULTS: IMSVISUAL has 140 members worldwide and continues to grow. Through IMSVISUAL-related research, optical coherence tomography (OCT)-derived peripapillary retinal nerve fiber layer (pRNFL) thinning has been established as a predictor of future disability in MS. IMSVISUAL has also developed guidelines for reporting OCT studies in MS. Moreover, a systematic review performed by IMSVISUAL found that not only are pRNFL and ganglion cell + inner plexiform layer (GCIPL) thicknesses reduced in patients with MS (particularly in eyes with prior optic neuritis [ON]), but that inner nuclear layer measures may be higher among MS ON eyes, relative to healthy control eyes. Currently, there are several ongoing IMSVISUAL projects that will establish a role for visual outcomes in diagnosing MS and quantifying the effects of emerging therapies in clinical trials. CONCLUSIONS: The development of IMSVISUAL represents a major collaborative commitment to defining the role of visual outcomes in high-quality, large-scale studies that generate definitive and instructive findings in the field of MS. As a consortium, IMSVISUAL has completed several international collaborative projects, is actively engaged in numerous ongoing research studies, and is committed to expanding the role of vision research in MS and related disorders

    Identification and treatment of the visual processing asymmetry in MS patients with optic neuritis: The Pulfrich phenomenon

    No full text
    Background: The Pulfrich phenomenon (PF) is the illusory perception that an object moving linearly along a 2-D plane appears to instead follow an elliptical 3-D trajectory, a consequence of inter-eye asymmetry in the timing of visual object identification in the visual cortex; with optic neuritis as a common etiology. Objective: We have designed an objective method to identify the presence and magnitude of the PF, in conjunction with a cooresponding strategy by which to abolish the effect; with monocular application of neutral density filters to the less affected fellow eye, in patients with MS and a history of optic neuropathy (e.g. related to acute optic neuritis or subclinical optic neuropathy). Methods: Twenty-three MS patients with a history of acute unilateral or bilateral optic neuritis, and ten healthy control subjects (HC) were recruited to participate in a pilot study to assess our strategy. Subjects were asked to indicate whether a linearly moving pendulum ball followed a linear 2-D path versus an illusory 3-D elliptical object-motion trajectory, by reporting the ball's approximation to one of nine horizontally-oriented colored wires that were positioned parallel to one another and horizontal to the linear pendulum path. Perceived motion of the bob that moved along wires behind or in front (along the ‘Z' plane) of the middle reference wire indicated an illusory elliptical trajectory of ball motion consistent with the PF. Results: When the neutral density filter titration was applied to the fellow eye the severity of the PF decreased, eventually being fully abolished in all but one patient. The magnitude of neutral density filtering required correlated to the severity of the patient's initial PF magnitude (p < 0.001). Conclusions: We ascertained the magnitude of the visual illusion associated with the PF, and the corresponding magnitude of neutral density filtering necessary to abolish it

    The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis

    No full text
    BACKGROUND AND OBJECTIVES: Recent studies have suggested that inter-eye differences (IEDs) in peripapillary retinal nerve fiber layer (pRNFL) or ganglion cell+inner plexiform (GCIPL) thickness by spectral-domain optical coherence tomography (SD-OCT) may identify people with a history of unilateral optic neuritis (ON). However, this requires further validation. Machine learning classification may be useful for validating thresholds for OCT IEDs and for examining added utility for visual function tests, such as low-contrast letter acuity (LCLA), in the diagnosis of people with multiple sclerosis (PwMS) and for unilateral ON history. METHODS: Participants were from 11 sites within the International Multiple Sclerosis Visual System (IMSVISUAL) consortium. pRNFL and GCIPL thicknesses were measured using SD-OCT. A composite score combining OCT and visual measures was compared individual measurements to determine the best model to distinguish PwMS from controls. These methods were also used to distinguish those with history of ON among PwMS. ROC curve analysis was performed on a training dataset (2/3 of cohort), then applied to a testing dataset (1/3 of cohort). Support vector machine (SVM) analysis was used to assess whether machine learning models improved diagnostic capability of OCT. RESULTS: Among 1,568 PwMS and 552 controls, variable selection models identified GCIPL IED, average GCIPL thickness (both eyes), and binocular 2.5% LCLA as most important for classifying PwMS vs. controls. This composite score performed best, with AUC=0.89 (95% CI 0.85, 0.93), sensitivity=81% and specificity=80%. The composite score ROC curve performed better than any of the individual measures from the model (p<0.0001). GCIPL IED remained the best single discriminator of unilateral ON history among PwMS (AUC=0.77, 95% CI 0.71,0.83, sensitivity=68%, specificity=77%). SVM analysis performed comparably to standard logistic regression models. CONCLUSIONS: A composite score combining visual structure and function improved the capacity of SD-OCT to distinguish PwMS from controls. GCIPL IED best distinguished those with history of unilateral ON. SVM performed as well as standard statistical models for these classifications. CLASSIFICATION OF EVIDENCE: The study provides Class III evidence that SD-OCT accurately distinguishes multiple sclerosis from normal controls as compared to clinical criteria

    Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study

    No full text
    OBJECTIVE: To determine the optimal thresholds for intereye differences in retinal nerve fiber and ganglion cell + inner plexiform layer thicknesses for identifying unilateral optic nerve lesions in multiple sclerosis. Current international diagnostic criteria for multiple sclerosis do not include the optic nerve as a lesion site despite frequent involvement. Optical coherence tomography detects retinal thinning associated with optic nerve lesions. METHODS: In this multicenter international study at 11 sites, optical coherence tomography was measured for patients and healthy controls as part of the International Multiple Sclerosis Visual System Consortium. High‐ and low‐contrast acuity were also collected in a subset of participants. Presence of an optic nerve lesion for this study was defined as history of acute unilateral optic neuritis. RESULTS: Among patients (n = 1,530), receiver operating characteristic curve analysis demonstrated an optimal peripapillary retinal nerve fiber layer intereye difference threshold of 5μm and ganglion cell + inner plexiform layer threshold of 4μm for identifying unilateral optic neuritis (n = 477). Greater intereye differences in acuities were associated with greater intereye retinal layer thickness differences (p ≤ 0.001). INTERPRETATION: Intereye differences of 5μm for retinal nerve fiber layer and 4μm for macular ganglion cell + inner plexiform layer are robust thresholds for identifying unilateral optic nerve lesions. These thresholds may be useful in establishing the presence of asymptomatic and symptomatic optic nerve lesions in multiple sclerosis and could be useful in a new version of the diagnostic criteria. Our findings lend further validation for utilizing the visual system in a multiple sclerosis clinical trial setting
    corecore