190 research outputs found

    On Profit-Maximizing Pricing for the Highway and Tollbooth Problems

    Get PDF
    In the \emph{tollbooth problem}, we are given a tree \bT=(V,E) with nn edges, and a set of mm customers, each of whom is interested in purchasing a path on the tree. Each customer has a fixed budget, and the objective is to price the edges of \bT such that the total revenue made by selling the paths to the customers that can afford them is maximized. An important special case of this problem, known as the \emph{highway problem}, is when \bT is restricted to be a line. For the tollbooth problem, we present a randomized O(logn)O(\log n)-approximation, improving on the current best O(logm)O(\log m)-approximation. We also study a special case of the tollbooth problem, when all the paths that customers are interested in purchasing go towards a fixed root of \bT. In this case, we present an algorithm that returns a (1ϵ)(1-\epsilon)-approximation, for any ϵ>0\epsilon > 0, and runs in quasi-polynomial time. On the other hand, we rule out the existence of an FPTAS by showing that even for the line case, the problem is strongly NP-hard. Finally, we show that in the \emph{coupon model}, when we allow some items to be priced below zero to improve the overall profit, the problem becomes even APX-hard

    Randomized Composable Core-sets for Distributed Submodular Maximization

    Full text link
    An effective technique for solving optimization problems over massive data sets is to partition the data into smaller pieces, solve the problem on each piece and compute a representative solution from it, and finally obtain a solution inside the union of the representative solutions for all pieces. This technique can be captured via the concept of {\em composable core-sets}, and has been recently applied to solve diversity maximization problems as well as several clustering problems. However, for coverage and submodular maximization problems, impossibility bounds are known for this technique \cite{IMMM14}. In this paper, we focus on efficient construction of a randomized variant of composable core-sets where the above idea is applied on a {\em random clustering} of the data. We employ this technique for the coverage, monotone and non-monotone submodular maximization problems. Our results significantly improve upon the hardness results for non-randomized core-sets, and imply improved results for submodular maximization in a distributed and streaming settings. In summary, we show that a simple greedy algorithm results in a 1/31/3-approximate randomized composable core-set for submodular maximization under a cardinality constraint. This is in contrast to a known O(logkk)O({\log k\over \sqrt{k}}) impossibility result for (non-randomized) composable core-set. Our result also extends to non-monotone submodular functions, and leads to the first 2-round MapReduce-based constant-factor approximation algorithm with O(n)O(n) total communication complexity for either monotone or non-monotone functions. Finally, using an improved analysis technique and a new algorithm PseudoGreedy\mathsf{PseudoGreedy}, we present an improved 0.5450.545-approximation algorithm for monotone submodular maximization, which is in turn the first MapReduce-based algorithm beating factor 1/21/2 in a constant number of rounds

    Learning with a Drifting Target Concept

    Full text link
    We study the problem of learning in the presence of a drifting target concept. Specifically, we provide bounds on the error rate at a given time, given a learner with access to a history of independent samples labeled according to a target concept that can change on each round. One of our main contributions is a refinement of the best previous results for polynomial-time algorithms for the space of linear separators under a uniform distribution. We also provide general results for an algorithm capable of adapting to a variable rate of drift of the target concept. Some of the results also describe an active learning variant of this setting, and provide bounds on the number of queries for the labels of points in the sequence sufficient to obtain the stated bounds on the error rates

    Elementary processes governing the evolution of road networks

    Get PDF
    Urbanisation is a fundamental phenomenon whose quantitative characterisation is still inadequate. We report here the empirical analysis of a unique data set regarding almost 200 years of evolution of the road network in a large area located north of Milan (Italy). We find that urbanisation is characterised by the homogenisation of cell shapes, and by the stability throughout time of high-centrality roads which constitute the backbone of the urban structure, confirming the importance of historical paths. We show quantitatively that the growth of the network is governed by two elementary processes: (i) `densification', corresponding to an increase in the local density of roads around existing urban centres and (ii) `exploration', whereby new roads trigger the spatial evolution of the urbanisation front. The empirical identification of such simple elementary mechanisms suggests the existence of general, simple properties of urbanisation and opens new directions for its modelling and quantitative description.Comment: 10 pages, 6 figure

    Phase transitions in contagion processes mediated by recurrent mobility patterns

    Full text link
    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumors, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modeled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyze contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models due to the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behavior by analyzing diffusion processes mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary Information; Nature Physics (2011

    Social welfare and profit maximization from revealed preferences

    Full text link
    Consider the seller's problem of finding optimal prices for her nn (divisible) goods when faced with a set of mm consumers, given that she can only observe their purchased bundles at posted prices, i.e., revealed preferences. We study both social welfare and profit maximization with revealed preferences. Although social welfare maximization is a seemingly non-convex optimization problem in prices, we show that (i) it can be reduced to a dual convex optimization problem in prices, and (ii) the revealed preferences can be interpreted as supergradients of the concave conjugate of valuation, with which subgradients of the dual function can be computed. We thereby obtain a simple subgradient-based algorithm for strongly concave valuations and convex cost, with query complexity O(m2/ϵ2)O(m^2/\epsilon^2), where ϵ\epsilon is the additive difference between the social welfare induced by our algorithm and the optimum social welfare. We also study social welfare maximization under the online setting, specifically the random permutation model, where consumers arrive one-by-one in a random order. For the case where consumer valuations can be arbitrary continuous functions, we propose a price posting mechanism that achieves an expected social welfare up to an additive factor of O(mn)O(\sqrt{mn}) from the maximum social welfare. Finally, for profit maximization (which may be non-convex in simple cases), we give nearly matching upper and lower bounds on the query complexity for separable valuations and cost (i.e., each good can be treated independently)

    Ordinary Percolation with Discontinuous Transitions

    Full text link
    Percolation on a one-dimensional lattice and fractals such as the Sierpinski gasket is typically considered to be trivial because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge at a nontrivial critical point. There, the usual order parameter, describing the probability of any node to be part of the largest cluster, jumps instantly to a finite value. Here, we provide a simple example of this transition in form of a small-world network consisting of a one-dimensional lattice combined with a hierarchy of long-range bonds that reveals many features of the transition in a mathematically rigorous manner.Comment: RevTex, 5 pages, 4 eps-figs, and Mathematica Notebook as Supplement included. Final version, with several corrections and improvements. For related work, see http://www.physics.emory.edu/faculty/boettcher

    Information theoretic approach to interactive learning

    Full text link
    The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.Comment: 6 page

    Towards a characterization of behavior-disease models

    Get PDF
    The last decade saw the advent of increasingly realistic epidemic models that leverage on the availability of highly detailed census and human mobility data. Data-driven models aim at a granularity down to the level of households or single individuals. However, relatively little systematic work has been done to provide coupled behavior-disease models able to close the feedback loop between behavioral changes triggered in the population by an individual's perception of the disease spread and the actual disease spread itself. While models lacking this coupling can be extremely successful in mild epidemics, they obviously will be of limited use in situations where social disruption or behavioral alterations are induced in the population by knowledge of the disease. Here we propose a characterization of a set of prototypical mechanisms for self-initiated social distancing induced by local and non-local prevalence-based information available to individuals in the population. We characterize the effects of these mechanisms in the framework of a compartmental scheme that enlarges the basic SIR model by considering separate behavioral classes within the population. The transition of individuals in/out of behavioral classes is coupled with the spreading of the disease and provides a rich phase space with multiple epidemic peaks and tipping points. The class of models presented here can be used in the case of data-driven computational approaches to analyze scenarios of social adaptation and behavioral change.Comment: 24 pages, 15 figure
    corecore