260 research outputs found

    The multiferroic phases of (Eu:Y)MnO3

    Full text link
    We report on structural, magnetic, dielectric, and thermodynamic properties of (Eu:Y)MnO3 for Y doping levels 0 <= x < 1. This system resembles the multiferroic perovskite manganites RMnO3 (with R= Gd, Dy, Tb) but without the interference of magnetic contributions of the 4f-ions. In addition, it offers the possibility to continuously tune the influence of the A-site ionic radii. For small concentrations x <= 0.1 we find a canted antiferromagnetic and paraelectric groundstate. For higher concentrations x <= 0.3 ferroelectric polarization coexists with the features of a long wavelength incommensurate spiral magnetic phase analogous to the observations in TbMnO3. In the intermediate concentration range around x = 0.2 a multiferroic scenario is realized combining weak ferroelectricity and weak ferromagnetism, presumably due to a canted spiral magnetic structure.Comment: 8 pages, 8 figure

    Coupling of phonons and electromagnons in GdMnO_3

    Get PDF
    The infrared and Terahertz properties of GdMnO_3 have been investigated as function of temperature and magnetic field, with special emphasis on the phase boundary between the incommensurate and the canted antiferromagnetic structures. The heterogeneous incommensurate phase reveals strong magnetodielectric effects, characterized by significant magnetoelectric contributions to the static dielectric permittivity and by the existence of electrically excited magnons (electromagnons). In the commensurate canted antiferromagnetic phase the magnetoelectric contributions to the dielectric constant and electromagnons are suppressed. The corresponding spectral weight is transferred to the lowest lattice vibration demonstrating the strong coupling of phonons with electromagnons.Comment: 5 pages, 4 figure

    Uniaxial pressure dependencies of the phase transitions in GdMnO3_3

    Full text link
    GdMnO3_3 shows an incommensurate antiferromagnetic order below ≃42\simeq 42 K, transforms into a canted A-type antiferromagnet below ≃20\simeq 20 K, and for finite magnetic fields along the b axis ferroelectric order occurs below ≃12\simeq 12 K. From high-resolution thermal expansion measurements along all three principal axes, we determine the uniaxial pressure dependencies of the various transition temperatures and discuss their correlation to changes of the magnetic exchange couplings in RRMnO3_3 (R=La,...DyR = {\rm La, ... Dy}).Comment: 2 pages, 3 figures, submitted to JMMM (Proceedings of ICM'06, Kyoto

    Low-energy Mott-Hubbard excitations in LaMnO_3 probed by optical ellipsometry

    Full text link
    We present a comprehensive ellipsometric study of an untwinned, nearly stoichiometric LaMnO_3 crystal in the spectral range 1.2-6.0 eV at temperatures 20 K < T < 300 K. The complex dielectric response along the b and c axes of the Pbnm orthorhombic unit cell, \epsilon^b(\nu) and \epsilon^c(\nu), is highly anisotropic over the spectral range covered in the experiment. The difference between \epsilon^b(\nu) and \epsilon^c(\nu) increases with decreasing temperature, and the gradual evolution observed in the paramagnetic state is strongly enhanced by the onset of A-type antiferromagnetic long-range order at T_N = 139.6 K. In addition to the temperature changes in the lowest-energy gap excitation at 2 eV, there are opposite changes observed at higher energy at 4 - 5 eV, appearing on a broad-band background due to the strongly dipole-allowed O 2p -- Mn 3d transition around the charge-transfer energy 4.7 eV. Based on the observation of a pronounced spectral-weight transfer between low- and high-energy features upon magnetic ordering, they are assigned to high-spin and low-spin intersite d^4d^4 - d^3d^5 transitions by Mn electrons. The anisotropy of the lowest-energy optical band and the spectral weight shifts induced by antiferromagnetic spin correlations are quantitatively described by an effective spin-orbital superexchange model. An analysis of the multiplet structure of the intersite transitions by Mn e_g electrons allowed us to estimate the effective intra-atomic Coulomb interaction, the Hund exchange coupling, and the Jahn-Teller splitting energy between e_g orbitals in LaMnO_3. This study identifies the lowest-energy optical transition at 2 eV as an intersite d-d transition, whose energy is substantially reduced compared to that obtained from the bare intra-atomic Coulomb interaction.Comment: 10 pages, 14 figure

    Spin-controlled Mott-Hubbard bands in LaMnO_3 probed by optical ellipsometry

    Full text link
    Spectral ellipsometry has been used to determine the dielectric function of an untwinned crystal of LaMnO_3 in the spectral range 0.5-5.6 eV at temperatures 50 K < T < 300 K. A pronounced redistribution of spectral weight is found at the Neel temperature T_N = 140 K. The anisotropy of the spectral weight transfer matches the magnetic ordering pattern. A superexchange model quantitatively describes spectral weight transfer induced by spin correlations. This analysis implies that the lowest-energy transitions around 2 eV are intersite d-d transitions, and that LaMnO_3 is a Mott-Hubbard insulator.Comment: 4 pages, 4 figure
    • …
    corecore