28 research outputs found

    A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems

    Get PDF
    Resistive (or memristive) switching devices based on metal oxides find applications in memory, logic and neuromorphic computing systems. Their small area, low power operation, and high functionality meet the challenges of brain-inspired computing aiming at achieving a huge density of active connections (synapses) with low operation power. This work presents a new artificial synapse scheme, consisting of a memristive switch connected to 2 transistors responsible for gating the communication and learning operations. Spike timing dependent plasticity (STDP) is achieved through appropriate shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated artificial synapses demonstrate STDP with stochastic behavior due to (i) the natural variability of set/reset processes in the nanoscale switch, and (ii) the different response of the switch to a given stimulus depending on the initial state. Experimental results are confirmed by model-based simulations of the memristive switching. Finally, system-level simulations of a 2-layer neural network and a simplified STDP model show random learning and recognition of patterns

    Analytical Modeling of Current Overshoot in Oxide-Based Resistive Switching Memory (RRAM)

    Get PDF
    Current overshoot due to parasitic capacitance during set transition represents a major concern for controlling the resistance and current consumption in resistive switching memory (RRAM) arrays. In this letter, the impact of current overshoot on the low-resistance state (LRS) is evaluated by means of experiments on one-transistor/one-resistor structures of HfO2 RRAM. We develop a physics-based analytical model, able to calculate the LRS resistance and the corresponding reset current by a closed-form formula. The model allows predicting the current overshoot impact for any value of compliance current, set voltage, and parasitic capacitance

    Postcycling Degradation in Metal-Oxide Bipolar Resistive Switching Memory

    Get PDF
    Resistive switching memory (RRAM) features many optimal properties for future memory applications that make RRAM a strong candidate for storage-class memory and embedded nonvolatile memory. This paper addresses the cycling-induced degradation of RRAM devices based on a HfO2 switching layer. We show that the cycling degradation results in the decrease of several RRAM parameters, such as the resistance of the low-resistance state, the set voltage Vset, the reset voltage Vreset, and others. The degradation with cycling is further attributed to enhanced ion mobility due to defect generation within the active filament area in the RRAM device. A distributed-energy model is developed to simulate the degradation kinetics and support our physical interpretation. This paper provides an efficient methodology to predict device degradation after any arbitrary number of cycles and allows for wear leveling in memory array
    corecore