4,195 research outputs found

    Gauge Dependence in the AdS/CFT Correspondence

    Get PDF
    We consider the AdS space formulation of the classical dynamics deriving from the Stueckelberg Lagrangian. The on-shell action is shown to be free of infrared singularities as the vector boson mass tends to zero. In this limit the model becomes Maxwell theory formulated in an arbitrary covariant gauge. Then we use the AdS/CFT correspondence to compute the two-point correlation functions on the boundary. It is shown that the gauge dependence concentrates on the contact terms.Comment: 13 pages, REVTEX, misprints in the abstract corrected. Minor changes. Version to be publishe

    Typicality versus thermality: An analytic distinction

    Full text link
    In systems with a large degeneracy of states such as black holes, one expects that the average value of probe correlation functions will be well approximated by the thermal ensemble. To understand how correlation functions in individual microstates differ from the canonical ensemble average and from each other, we study the variances in correlators. Using general statistical considerations, we show that the variance between microstates will be exponentially suppressed in the entropy. However, by exploiting the analytic properties of correlation functions we argue that these variances are amplified in imaginary time, thereby distinguishing pure states from the thermal density matrix. We demonstrate our general results in specific examples and argue that our results apply to the microstates of black holes.Comment: 22 pages + appendices, 3 eps figure

    What we don't know about time

    Full text link
    String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating "Forty Years of String Theory", it seems appropriate to step back and ask what we do not understand. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.Comment: 15 pages; Essay for a special issue of Foundations of Physics commemorating "Forty years of string theory

    On the existence of supergravity duals to D1--D5 CFT states

    Full text link
    We define a metric operator in the 1/2-BPS sector of the D1-D5 CFT, the eigenstates of which have a good semi-classical supergravity dual; the non-eigenstates cannot be mapped to semi-classical gravity duals. We also analyse how the data defining a CFT state manifests itself in the gravity side, and show that it is arranged into a set of multipoles. Interestingly, we find that quantum mechanical interference in the CFT can have observable manifestations in the semi-classical gravity dual. We also point out that the multipoles associated to the normal statistical ensemble fluctuate wildly, indicating that the mixed thermal state should not be associated to a semi-classical geometry.Comment: 22 pages, 2 figures. v2 : references added, typos correcte

    A Multi-Boundary AdS Orbifold and DLCQ Holography: A universal holographic description of extremal black hole horizons

    Full text link
    We examine a stationary but non-static asymptotically AdS_3 spacetime with two causally connected conformal boundaries, each of which is a ``null cylinder'', namely a cylinder with a null direction identified. This spacetime arises from three different perspectives: (i) as a non-singular, causally regular orbifold of global AdS_3 by boosts, (ii) as a Penrose-like limit focusing on the horizon of extremal BTZ black holes, and (iii) as an S^1 fibration over AdS_2. Each of these perspectives sheds an interesting light on holography. Examination of the conformal boundary of the spacetime shows that the dual to the space should involve DLCQ limits of the D1-D5 conformal field theory. The Penrose-like limit approach leads to a similar conclusion, by isolating a sector of the complete D1-D5 CFT that describes the physics in the vicinity of the horizon of an extremal black hole. As such this is a holographic description of the universal horizon dynamics of the extremal black holes in AdS_3 and also of the four and five dimensional stringy black holes whose states were counted in string theory. The AdS_2 perspective draws a connection to a 0+1d quantum mechanical theory. Various dualities lead to a Matrix model description of the spacetime. Many interesting issues that are related to both de Sitter physics and attempts to ``see behind a horizon'' using AdS/CFT arise from (a) the presence of two disconnected components to the boundary, and (b) the analytic structure of bulk physics in the complex coordinate plane.Comment: 48 pages. 3 EPS figures. If you use mpage to print multiple postscript pages on the same sheet of paper you may have difficulties with the figures. The PDF version will print fine, as will postscript if you stick to one page per sheet. v3: minor edits and references adde

    Long-term treatment-related morbidity in differentiated thyroid cancer: a systematic review of the literature

    Get PDF
    Background: Differentiated thyroid cancer (DTC) occurs in relatively young patients and is associated with a good prognosis and long survival. The management of this disease involves thyroidectomy, radioiodine therapy, and long-term thyroid-stimulating hormone suppression therapy (THST). The long-term effects of the treatment and the interaction between subclinical hyperthyroidism and long-term hypoparathyroidism are poorly understood. This review sought to examine the available evidence. Methods: A PubMed search was carried out using the search terms “Thyroid Neoplasms” AND (“Thyroxine” OR “Hypocalcemia” OR “Thyrotropin”). Original English language articles published in the last 30 years studying the morbidity from thyroid-stimulating hormone (TSH) suppression and hypoparathyroidism following a surgery for DTC were retrieved and reviewed by 2 authors. Results: Of the 3,000 results, 66 papers including 4,517 patients were selected for the present study. Studies reported on a range of skeletal (included in 34 studies, 1,647 patients), cardiovascular (17 studies, 957 patients), psychological (10 studies, 663 patients), and other outcomes (10 studies, 1,348 patients). Nine of 26 studies on patients who underwent THST showed a reduction in bone density, and 13 of 23 studies showed an increase in bone turnover markers. Skeletal effects were more marked in postmenopausal women. There was no evidence of increased fracture risk, and only little data were available on hypoparathyroidism. Four of five studies showed an increased left ventricular mass index on echocardiography, and one study showed a higher prevalence of atrial fibrillation (AF). There was little difference in basic physiological parameters and limited literature regarding symptoms or significant events. Six studies showed associations between long-term TSH suppression and impaired quality of life. Impaired glucose metabolism and prothrombotic states were also found in DTC patients. Conclusion: There is limited literature regarding long-term DTC treatment-related morbidity, particularly regarding the effects of long-term hypocalcemia. Most studies have focused on surrogate markers and not on clinical outcomes. A large prospective study on defined clinical outcomes would help characterize the morbidity of treatment and stimulate research on tailoring treatment strategies

    Time evolution of entanglement entropy from a pulse

    Full text link
    We calculate the time evolution of the entanglement entropy in a 1+1 CFT with a holographic dual when there is a localized left-moving packet of energy density. We find the gravity result agrees with a field theory result derived from the transformation properties of R\'enyi entropy. We are able to reproduce behavior which qualitatively agrees with CFT results of entanglement entropy of a system subjected to a local quench. In doing so we construct a finite diffeomorphism which tales three-dimensional anti-de Sitter space in the Poincar\'e patch to a general solution, generalizing the diffeomorphism that takes the Poincar\'e patch a BTZ black hole. We briefly discuss the calculation of correlation functions in these backgrounds and give results at large operator dimension.Comment: 18 pages, 6 figure

    Reoperation for bleeding after thyroid and parathyroid surgery : incidence, risk factors, prevention, and management

    Get PDF
    Introduction Bleeding after thyroid and/or parathyroid surgery is a life-threatening emergency. The aim of this study was to determine the rates of reoperation following bleeding, identify risk factors, assess management strategies and outcomes, and develop protocols to reduce risk and improve management of bleeding. Methods A retrospective cohort study of all consecutive patients who underwent thyroid and/or parathyroid surgery over a 7-year period was conducted. A nested case–control design was used to evaluate specific factors and their association with reoperation for bleeding. Results Of 1913 patients, 25 (1.3%) underwent reoperation for bleeding. Of the 25 patients who bled, 6 (24%) required reoperation before leaving theatre; 17 (68%) had bleeding within 6 h, 1 (4%) between 6 and 24 h, and 1 (4%) after 24 h. Reoperation for bleeding was not associated with age, gender, or surgeon. Patients who had total thyroidectomy were more likely to have reoperation for bleeding compared to hemithyroidectomy (p = 0.045) or parathyroidectomy (p = 0.001). The following factors were not associated with bleeding: neck dissection, re-do surgery, drain use, blood-thinning medication or clotting disorders, and BMI. Patients who had reoperation for bleeding had longer hospital stay (p = 0.001), but similar rates of RLN palsy, wound infection, and hypoparathyroidism. Conclusion A higher risk profile for significant post-operative bleeding cannot be determined in patients undergoing thyroid surgery. Based on this experience, we developed protocols to reduce the risk of bleeding (the ITSRED Fred protocol) and for the early detection and management of bleed (the SCOOP protocol) following thyroid and/or parathyroid surgery

    Entropy of near-extremal black holes in AdS_5

    Get PDF
    We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.Comment: LaTeX; v2: references and a few additional comments adde

    Quantum geometry and gravitational entropy

    Full text link
    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S^5 universes. In this sector we devise a "coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.Comment: 29 pages, 2 figures; references adde
    corecore