80 research outputs found

    Advancement in Textile Technology for Defence Application

    Get PDF
    The early development of textiles involved use of natural materials like cotton, wool and flax. The advent of the new technology revolutionized textiles which enables to develop synthetic fibers like lycra®, a segmented polyurethane-urea, which has exceptional elastic properties, Kevlar®, which has ultra high strength properties and is used as bulletproof vest. For the improvement of personal mobility, health care and rehabilitation, it requires to integrate novel sensing and actuating functions to textiles. Fundamental challenge in the development of smart textile is that drapability and manufacturability of smart textiles should not be affected. Textile fabrics embedded with sensors, piezoelectric materials, flame retardant materials, super hydrophobic materials, controlled drug release systems and temperature adaptable materials can play major role in the development of advanced and high-tech military clothes. Advancement in the textile materials has the capacity of improving comfort, mobility and protection in diverse hostile environment. In this study, the advancement in energy harvesting textiles, controlled release textiles and engineering textiles are presented.Defence Science Journal, 2013, 63(3), pp.331-339, DOI:http://dx.doi.org/10.14429/dsj.63.275

    Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: a review.

    Get PDF
    Recent research in soft materials is an exhilarating category which has been transcending boundaries for variety of functional applications. This category also stems liquid crystals whose stimuli-responsive feature has fantasized researchers for application arrays in actuators and biomedical. Liquid crystals evince dual characteristics of liquid and solids empowering them to reversibly transit on external actuation. The after-effect of irradiating photons on liquid crystals (LC) facilitate outlying functioning and are engineered with gold nanorods, dyes, graphene and carbon nanotubes among others which greets to incoming stimulus and participates in transference of light energy to perceivable transformation through heat drive. This is progressively explored in medical domain for drug delivery, tissue engineering, cancer treatment, and other disciplines of medicine and bio-mimicking. Additionally, photothermal trigger equips localized punctilious treatment outshining diffusion assisted heating and enables spot treatment. However, LC utilization is burgeoning towards 3D printing, characterizing it as 4D Printing. Present review framework probes LC and its photothermal actuation chemistry in the medical domain. Furthermore, it reflects on LC potential in smart manufacturing in 3D/4D printing, its challenges (limited concentration of filler, its miscibility, and actuation cycle fatigue) and future likelihood

    UHMWPE for biomedical applications: performance and functionalization.

    Get PDF
    According to a survey conducted by Grand View Research, the market demand for medical grade UHMWPE has raise remarkably from 60.9 kilotons up to 204.8 kilotons during 2015–2024 valued at $1.36 billion (USD) with a compound annual growth rate of 15%. There are various materials available for medical implants comprising of metals, ceramics and polymers among them UHMWPE has been used widely. The wide impact of UHMWPE in medical field is due it's superior biocompatibility, chemical resistance, low wear volume (0.68 mm3), ultimate tensile strength (41.3 MPa), low coefficient of friction [In dry condition (0.12–0.15)] and high crystallinity (more than 90%). However, wear debris, oxidative degradation due to generation of free radicals when subjected to irradiation with gamma rays and low ageing of implant are some critical problems observed in UHMWPE based implants in human body. These severe problems have been resolved using various innovative methodologies to enhance the properties of UHMWPE, comprising of surface modification techniques for pure UHMWPE as well as composite reinforced UHMWPE. The enhancement in properties of pure UHMWPE is achieved using electron beam or atmospheric cold plasma treatment. The reinforced composites are majorly developed by reinforcement of materials such as hydroxyapatite, Multi walled carbon nanotubes, Vitamin E (α-tocopherol), graphene oxide, DLC films, Gallic acid and Dodecyl gallate along with base UHMWPE matrix material. Based on the recent studies, Comparative study of these functionalization techniques along with the ameliorated surface or bulk properties along with it's diverse application in medical implant fields (Total hip arthroplasty, joint implants, bone tissue engineering) has been discussed extensively. Descriptive study of pure UHMWPE along with it's composite to functionalize the properties of the medical implants has been included in this review along with it's future scope succeeding the review

    Temperature assisted in-situ small angle X-ray scattering analysis of Ph-POSS/PC polymer nanocomposite

    Full text link
    Inorganic/organic nanofillers have been extensively exploited to impart thermal stability to polymer nanocomposite via various strategies that can endure structural changes when exposed a wide range of thermal environment during their application. In this abstraction, we have utilized temperature assisted in-situ small angle X-ray scattering (SAXS) to examine the structural orientation distribution of inorganic/organic nanofiller octa phenyl substituted polyhedral oligomeric silsesquioxane (Ph-POSS) in Polycarbonate (PC) matrix from ambient temperature to 180 °C. A constant interval of 30 °C with the heating rate of 3 °C/min was utilized to guise the temperature below and above the glass transition temperature of PC followed by thermal gravimetric, HRTEM, FESEM and hydrophobic analysis at ambient temperature. The HRTEM images of Ph-POSS nano unit demonstrated hyperrectangular structure, while FESEM image of the developed nano composite rendered separated phase containing flocculated and overlapped stacking of POSS units in the PC matrix. The phase separation in polymer nanocomposite was further substantiated by thermodynamic interaction parameter (χ) and mixing energy (Emix) gleaned via Accelrys Materials studio. The SAXS spectra has demonstrated duplex peak at higher scattering vector region, postulated as a primary and secondary segregated POSS domain and followed by abundance of secondary peak with temperature augmentation

    Sludge-derived biochar: Physicochemical characteristics for environmental remediation

    Get PDF
    The global production of fecal wastes is envisioned to reach a very high tonnage by 2030. Perilous handling and consequential exposition of human and animal fecal matter are inextricably linked with stunted growth, enteric diseases, inadequate cognitive skills, and zoonoses. Sludge treatment from sewage and water treatment processes accounts for a very high proportion of overall operational expenditure. Straightforward carbonization of sludges to generate biochar adsorbents or catalysts fosters a circular economy, curtailing sludge processing outlay. Biochars, carbonaceous substances synthesized via the thermochemical transformation of biomass, possess very high porosity, cation exchange capacity, specific surface area, and active functional sorption sites making them very effective as multifaceted adsorbents, promoting a negative carbon emission technology. By customizing the processing parameters and biomass feedstock, engineered biochars possess discrete physicochemical characteristics that engender greater efficaciousness for adsorbing various contaminants. This review provides explicit insight into the characteristics, environmental impact considerations, and SWOT analysis of different sludges (drinking water, fecal, and raw sewage sludge) and the contemporary biochar production, modification, characterization techniques, and physicochemical characteristics, factors influencing the properties of biochars derived from the aforestated sludges, along with the designing of chemical reactors involved in biochar production. This paper also manifests a state-of-the-art discussion of the utilization of sludge-derived biochars for the eviction of toxic metal ions, organic compounds, microplastics, toxic gases, vermicomposting approaches, and soil amelioration with an emphasis on biochar recyclability, reutilization, and toxicity. The practicability of scaling up biochar generation with multifaceted, application-accustomed functionalities should be explored to aggrandize socio-economic merits

    Compendious review on 3D-printed gels for effluent treatment

    Get PDF
    © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/)Direct ink writing (DIW) has emerged as an innovative and efficient method for gel synthesis, presenting numerous advantages over conventional techniques. Leveraging a diverse array of raw materials, DIW offers precise control over gel construction, facilitating the fabrication of materials with larger pore sizes. This capability contrasts with traditional methods like ionic gelation, which typically produce a maximum pore size of 130 μm. The increasing demand for materials with exceptional adsorption properties, especially for effluent treatment, has driven extensive research in this domain. While traditional gel preparation methods remain valuable, they exhibit inherent limitations. Thus, there is a pressing need for more efficient and scalable approaches to gel synthesis. DIW serves as a superior alternative, providing enhanced control over printing parameters and enabling the customization of materials to meet specific requirements. This paper not only addresses the limitations of traditional methods but also highlights the benefits of utilizing DIW for gel formulation. Additionally, it offers an overview of commonly employed adsorption isotherm and kinetic models and explores the applications of DIW-printed gels in effluent treatment. Given the expanding body of research in this area, this critical and comprehensive review underscores the potential of DIW in the adsorption of pollutants from wastewater.Peer reviewe

    Structural and thermal stability of polycarbonate decorated fumed silica nanocomposite via thermomechanical analysis and In-situ temperature assisted SAXS

    Full text link
    The inorganic and organic nanocomposites have enticed wide interest in the field of polymer-based composite systems to augment their physiochemical properties like mechanical strength and electrical conductivity. Achieving interfacial interaction between inorganic filler and polymer matrix is a recurring challenge, which has significant implications for mechanical properties of nanocomposites. In this context, the effect of "interfacial zone" on structural and thermal attributes of the melt blended pristine polycarbonate and polycarbonate (PC) decorated fumed silica nanocomposite have been examined from ambient temperature to the glass transition temperature. Thermomechanical characterization and in-situ temperature assisted small angle X-ray scattering technique (SAXS) were used for contemplating quantitative and qualitative molecular dynamics of developed nanocomposites. Though, the FT-IR spectra have demonstrated some extent of interaction between inorganic and organic groups of composite, the reduced glass transition temperature and storage modulus was ascertained in DMA as well as in DSC, which has been further confirmed by in-situ temperature assisted SAXS. It is envisioned that the utilization of in-situ SAXS in addition to the thermomechanical analysis will render the qualitative and quantitative details about the interfacial zone and its effect on thermal and mechanical properties of nanocomposite at varying temperature conditions
    corecore