12 research outputs found
Molecularly Guided Drug Repurposing for Cholangiocarcinoma: An Integrative Bioinformatic Approach.
Cholangiocarcinoma (CCA) has a complex immune microenvironment architecture, thus possessing challenges in its characterization and treatment. This study aimed to repurpose FDA-approved drugs for cholangiocarcinoma by transcriptomic-driven bioinformatic approach. Cox-proportional univariate regression was applied to 3017 immune-related genes known a priori to identify a list of mortality-associated genes, so-called immune-oncogenic gene signature, in CCA tumor-derived RNA-seq profiles of two independent cohorts. Unsupervised clustering stratified CCA tumors into two groups according to the immune-oncogenic gene signature expression, which then confirmed its clinical relevance by Kaplan-Meier curve. Molecularly guided drug repurposing was performed by an integrative connectivity map-prioritized drug-gene network analysis. The immune-oncogenic gene signature consists of 26 mortality-associated immune-related genes. Patients with high-expression signature had a poorer overall survival (log-rank p < 0.001), while gene enrichment analysis revealed cell-cycle checkpoint regulation and inflammatory-immune response signaling pathways affected this high-risk group. The integrative drug-gene network identified eight FDA-approved drugs as promising candidates, including Dasatinib a multi-kinase inhibitor currently investigated for advanced CCA with isocitrate-dehydrogenase mutations. This study proposes the use of the immune-oncogenic gene signature to identify high-risk CCA patients. Future preclinical and clinical studies are required to elucidate the therapeutic efficacy of the molecularly guided drugs as the adjunct therapy, aiming to improve the survival outcome
Effect of Combining EGFR Tyrosine Kinase Inhibitors and Cytotoxic Agents on Cholangiocarcinoma Cells
Co-Clinical Trials: An Innovative Drug Development Platform for Cholangiocarcinoma
Cholangiocarcinoma (CCA), a group of malignancies that originate from the biliary tract, is associated with a high mortality rate and a concerning increase in worldwide incidence. In Thailand, where the incidence of CCA is the highest, the socioeconomic burden is severe. Yet, treatment options are limited, with surgical resection being the only form of treatment with curative intent. The current standard-of-care remains adjuvant and palliative chemotherapy which is ineffective in most patients. The overall survival rate is dismal, even after surgical resection and the tumor heterogeneity further complicates treatment. Together, this makes CCA a significant burden in Southeast Asia. For effective management of CCA, treatment must be tailored to each patient, individually, for which an assortment of targeted therapies must be available. Despite the increasing numbers of clinical studies in CCA, targeted therapy drugs rarely get approved for clinical use. In this review, we discuss the shortcomings of the conventional clinical trial process and propose the implementation of a novel concept, co-clinical trials to expedite drug development for CCA patients. In co-clinical trials, the preclinical studies and clinical trials are conducted simultaneously, thus enabling real-time data integration to accurately stratify and customize treatment for patients, individually. Hence, co-clinical trials are expected to improve the outcomes of clinical trials and consequently, encourage the approval of targeted therapy drugs. The increased availability of targeted therapy drugs for treatment is expected to facilitate the application of precision medicine in CCA
RTK25: A Comprehensive Molecular Profiling Strategy in Cholangiocarcinoma Using an Integrated Bioinformatics Approach
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies that primarily originate from the bile duct. Tumor heterogeneity is a prime characteristic of CCA and considering the scarcity of approved targeted therapy drugs, this makes precision oncology impractical in CCA. Stratifying patients based on their molecular signature and biomarker-guided therapy may offer a conducive solution. Receptors tyrosine kinases (RTK) are potential targets for novel therapeutic strategies in CCA as RTK signaling is dysregulated in CCA. This study aims to identify targetable RTK profile in CCA using a bioinformatic approach. We discovered that CCA samples could be grouped into molecular subtypes based on the gene expression profile of selected RTKs (RTK25). Using the RTK25 gene list, we discovered five distinct molecular subtypes of CCA in this cohort. Tyrosine kinase inhibitors that target each RTK profile and their subsequent molecular signatures were also discovered. These results suggest that certain RTKs correlate with each other, indicating that tailored dual inhibition of RTKs may be more favorable than monotherapy. The results from this study can direct future investigative attention towards validating this concept in in vivo and in vitro systems. Ultimately, this will facilitate biomarker-guided clinical trials for the successful approval of novel therapeutic options in CCA
In Silico Target Identification of Galangin, as an Herbal Flavonoid against Cholangiocarcinoma
Cholangiocarcinoma (CCA) is a heterogenous group of malignancies in the bile duct, which proliferates aggressively. CCA is highly prevalent in Northeastern Thailand wherein it is associated with liver fluke infection, or Opisthorchis viverrini (OV). Most patients are diagnosed in advanced stages, when the cancer has metastasized or severely progressed, thereby limiting treatment options. Several studies investigate the effect of traditional Thai medicinal plants that may be potential therapeutic options in combating CCA. Galangin is one such herbal flavonoid that has medicinal properties and exhibits anti-tumor properties in various cancers. In this study, we investigate the role of Galangin in inhibiting cell proliferation, invasion, and migration in OV-infected CCA cell lines. We discovered that Galangin reduced cell viability and colony formation by inducing apoptosis in CCA cell lines in a dose-dependent manner. Further, Galangin also effectively inhibited invasion and migration in OV-infected CCA cells by reduction of MMP2 and MMP9 enzymatic activity. Additionally, using proteomics, we identified proteins affected post-treatment with Galangin. Enrichment analysis revealed that several kinase pathways were affected by Galangin, and the signature corroborated with that of small molecule kinase inhibitors. Hence, we identified putative targets of Galangin using an in silico approach which highlighted c-Met as candidate target. Galangin effectively inhibited c-Met phosphorylation and subsequent signaling in in vitro CCA cells. In addition, Galangin was able to inhibit HGF, a mediator of c-Met signaling, by suppressing HGF-stimulated invasion, as well as migration and MMP9 activity. This shows that Galangin can be a useful anti-metastatic therapeutic strategy in a subtype of CCA patients
Targeting FGFRs Using PD173074 as a Novel Therapeutic Strategy in Cholangiocarcinoma
Cholangiocarcinoma (CCA) is an architecturally complex tumour with high heterogeneity. Discovery at later stages makes treatment challenging. However, the lack of early detection methodologies and the asymptomatic nature of CCA make early diagnosis more difficult. Recent studies revealed the fusions in Fibroblast Growth Factor Receptors (FGFRs), a sub-family of RTKs, as promising targets for targeted therapy for CCA. Particularly, FGFR2 fusions have been of particular interest, as translocations have been found in approximately 13% of CCA patients. Pursuing this, Pemigatinib, a small-molecule inhibitor of FGFR, became the first targeted therapy drug to be granted accelerated approval by the FDA for treating CCA patients harbouring FGFR2 fusions who have failed first-line chemotherapy. However, despite the availability of Pemigatinib, a very limited group of patients benefit from this treatment. Moreover, as the underlying mechanism of FGFR signalling is poorly elucidated in CCA, therapeutic inhibitors designed to inhibit this pathway are prone to primary and acquired resistance, as witnessed amongst other Tyrosine Kinase Inhibitors (TKIs). While acknowledging the limited cohort that benefits from FGFR inhibitors, and the poorly elucidated mechanism of the FGFR pathway, we sought to characterise the potential of FGFR inhibitors in CCA patients without FGFR2 fusions. Here we demonstrate aberrant FGFR expression in CCA samples using bioinformatics and further confirm phosphorylated-FGFR expression in paraffinised CCA tissues using immunohistochemistry. Our results highlight p-FGFR as a biomarker to guide FGFR-targeted therapies. Furthermore, CCA cell lines with FGFR expression were sensitive to a selective pan-FGFR inhibitor, PD173074, suggesting that this drug can be used to suppress CCA cells irrespective of the FGFR2 fusions. Finally, the correlation analysis utilising publicly available cohorts suggested the possibility of crosstalk amongst the FGFR and EGFR family of receptors as they are significantly co-expressed. Accordingly, dual inhibition of FGFRs and EGFR by PD173074 and EGFR inhibitor erlotinib was synergistic in CCA. Hence, the findings from this study provide support for further clinical investigation of PD173074, as well as other FGFR inhibitors, to benefit a larger cohort of patients. Altogether, this study shows for the first time the potential of FGFRs and the importance of dual inhibition as a novel therapeutic strategy in CCA
Upregulated LAMA3 modulates proliferation, adhesion, migration and epithelial‑to‑mesenchymal transition of cholangiocarcinoma cells
Abstract A poor outcome for cholangiocarcinoma (CCA) patients is still a clinical challenge. CCA is typically recognized by the desmoplastic nature, which accounts for its malignancy. Among various extracellular matrix proteins, laminin is the most potent inducer for CCA migration. Herein, we accessed the expression profiles of laminin gene family and explored the significance of the key laminin subunit on CCA aggressiveness. Of all 11 laminin genes, LAMA3, LAMA5, LAMB3 and LAMC2 were concordantly upregulated based on the analysis of multiple public transcriptomic datasets and also overexpressed in Thai CCA cell lines and patient tissues in which LAMA3A upregulated in the highest frequency (97%) of the cases. Differential expression genes (DEGs) analysis of low and high laminin signature groups revealed LAMA3 as the sole common DEG in all investigated datasets. Restratifying CCA samples according to LAMA3 expression indicated the association of LAMA3 in the focal adhesion pathway. Silencing LAMA3 revealed that it plays important roles in CCA cell proliferation, adhesion, migration and epithelial-to-mesenchymal transition. Taken together, this research signifies the roles of dysregulated ECM homeostasis in CCA malignancy and highlights, for the first time, the potential usage of LAMA3 as the diagnostic biomarker and the therapeutic target to tackle the CCA stromal
Therapeutic Implications of Ceritinib in Cholangiocarcinoma beyond ALK Expression and Mutation
Cholangiocarcinoma (CCA) is a difficult-to-treat cancer, with limited therapeutic options and surgery being the only curative treatment. Standard chemotherapy involves gemcitabine-based therapies combined with cisplatin, oxaliplatin, capecitabine, or 5-FU with a dismal prognosis for most patients. Receptor tyrosine kinases (RTKs) are aberrantly expressed in CCAs encompassing potential therapeutic opportunity. Hence, 112 RTK inhibitors were screened in KKU-M213 cells, and ceritinib, an approved targeted therapy for ALK-fusion gene driven cancers, was the most potent candidate. Ceritinib’s cytotoxicity in CCA was assessed using MTT and clonogenic assays, along with immunofluorescence, western blot, and qRT-PCR techniques to analyze gene expression and signaling changes. Furthermore, the drug interaction relationship between ceritinib and cisplatin was determined using a ZIP synergy score. Additionally, spheroid and xenograft models were employed to investigate the efficacy of ceritinib in vivo. Our study revealed that ceritinib effectively killed CCA cells at clinically relevant plasma concentrations, irrespective of ALK expression or mutation status. Ceritinib modulated multiple signaling pathways leading to the inhibition of the PI3K/Akt/mTOR pathway and activated both apoptosis and autophagy. Additionally, ceritinib and cisplatin synergistically reduced CCA cell viability. Our data show ceritinib as an effective treatment of CCA, which could be potentially explored in the other cancer types without ALK mutations