3 research outputs found

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system’s performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system

    Multi-Objective Optimal Power Flow Solution Using a Non-Dominated Sorting Hybrid Fruit Fly-Based Artificial Bee Colony

    No full text
    A new optimization technique is proposed for solving optimization problems having single and multiple objectives, with objective functions such as generation cost, loss, and severity value. This algorithm was developed to satisfy the constraints, such as OPF constraints, and practical constraints, such as ram rate limits. Single and multi-objective optimization problems were implemented with the proposed hybrid fruit fly-based artificial bee colony (HFABC) algorithm and the non-dominated sorting hybrid fruit fly-based artificial bee colony (NSHFABC) algorithm. HFABC is a hybrid model of the fruit fly and ABC algorithms. Selecting the user choice-based solution from the Pareto set by the proposed NSHFABC algorithm is performed by a fuzzy decision-based mechanism. The proposed HFABC method for single-objective optimization was analyzed using the Himmelblau test function, Booth’s test function, and IEEE 30 and IEEE 118 bus standard test systems. The proposed NSHFABC method for multi-objective optimization was analyzed using Schaffer1, Schaffer2, and Kursawe test functions, and the IEEE 30 bus test system. The obtained results of the proposed methods were compared with the existing literature

    Multi-Objective Optimal Power Flow Solution Using a Non-Dominated Sorting Hybrid Fruit Fly-Based Artificial Bee Colony

    No full text
    A new optimization technique is proposed for solving optimization problems having single and multiple objectives, with objective functions such as generation cost, loss, and severity value. This algorithm was developed to satisfy the constraints, such as OPF constraints, and practical constraints, such as ram rate limits. Single and multi-objective optimization problems were implemented with the proposed hybrid fruit fly-based artificial bee colony (HFABC) algorithm and the non-dominated sorting hybrid fruit fly-based artificial bee colony (NSHFABC) algorithm. HFABC is a hybrid model of the fruit fly and ABC algorithms. Selecting the user choice-based solution from the Pareto set by the proposed NSHFABC algorithm is performed by a fuzzy decision-based mechanism. The proposed HFABC method for single-objective optimization was analyzed using the Himmelblau test function, Booth’s test function, and IEEE 30 and IEEE 118 bus standard test systems. The proposed NSHFABC method for multi-objective optimization was analyzed using Schaffer1, Schaffer2, and Kursawe test functions, and the IEEE 30 bus test system. The obtained results of the proposed methods were compared with the existing literature
    corecore