183 research outputs found

    The effectiveness of interventions for optometric referrals into the hospital eye service: A review

    Get PDF
    Purpose: Ophthalmic services are currently under considerable stress; in the UK, ophthalmology departments have the highest number of outpatient appointments of any department within the National Health Service. Recognising the need for intervention, several approaches have been trialled to tackle the high numbers of false-positive referrals initiated in primary care and seen face to face within the hospital eye service (HES). In this mixed-methods narrative synthesis, we explored interventions based on their clinical impact, cost and acceptability to determine whether they are clinically effective, safe and sustainable. A systematic literature search of PubMed, MEDLINE and CINAHL, guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), was used to identify appropriate studies published between December 2001 and December 2022. Recent Findings: A total of 55 studies were reviewed. Four main interventions were assessed, where two studies covered more than one type: training and guidelines (n = 8), referral filtering schemes (n = 32), asynchronous teleophthalmology (n = 13) and synchronous teleophthalmology (n = 5). All four approaches demonstrated effectiveness for reducing false-positive referrals to the HES. There was sufficient evidence for stakeholder acceptance and cost-effectiveness of referral filtering schemes; however, cost comparisons involved assumptions. Referral filtering and asynchronous teleophthalmology reported moderate levels of false-negative cases (2%–20%), defined as discharged patients requiring HES monitoring. Summary: The effectiveness of interventions varied depending on which outcome and stakeholder was considered. More studies are required to explore stakeholder opinions around all interventions. In order to maximise clinical safety, it may be appropriate to combine more than one approach, such as referral filtering schemes with virtual review of discharged patients to assess the rate of false-negative cases. The implementation of a successful intervention is more complex than a ‘one-size-fits-all’ approach and there is potential space for newer types of interventions, such as artificial intelligence clinical support systems within the referral pathway

    Biomarkers of macular neovascularisation activity using optical coherence tomography angiography in treated stable neovascular age related macular degeneration

    Get PDF
    BACKGROUND: The aim of this study was to describe features of disease activity in patients with treated stable macular neovascularisation (MNV) in neovascular age related macular degeneration (nAMD) using optical coherence tomography angiography (OCTA). METHODS: Thirty-two eyes of 32 patients with nAMD were included in this prospective, observational study. These patients were undergoing treatment with aflibercept on a treat-and-extend regimen attending an extension to a 12-week treatment interval. RESULTS: All subjects had no macular haemorrhage and no structural OCT markers of active MNV activity at the index 12-week treatment extension visit. 31/32 OCTA images were gradeable without significant imaging artefact. The mean MNV size was 3.6mm2 ± 4.6mm2 and 27 (87.1%) had detectable MNV blood flow. 29/31 (93.5%) subjects had MNV with mature phenotypes including 10 non-specific, 10 tangle and 3 deadtree phenotypes. MNV halo and MNV central feeder vessel were noted in 18 (58.1%) and 19 (61.3%) of subjects respectively; only 1 (3.2%) subject was noted to have a MNV capillary fringe. CONCLUSIONS: MNV blood flow is still detectable using OCTA in the majority of subjects in this study with treated stable MNV. OCTA features associated included MNV mature phenotype, MNV feeder vessel, MNV halo and absence of capillary fringe

    Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images.

    Get PDF
    Background: Photographic diabetic retinopathy screening requires labour-intensive grading of retinal images by humans. Automated retinal image analysis software (ARIAS) could provide an alternative to human grading. We compare the performance of an ARIAS using true-colour, wide-field confocal scanning images and standard fundus images in the English National Diabetic Eye Screening Programme (NDESP) against human grading. Methods: Cross-sectional study with consecutive recruitment of patients attending annual diabetic eye screening. Imaging with mydriasis was performed (two-field protocol) with the EIDON platform (CenterVue, Padua, Italy) and standard NDESP cameras. Human grading was carried out according to NDESP protocol. Images were processed by EyeArt V.2.1.0 (Eyenuk Inc, Woodland Hills, California). The reference standard for analysis was the human grade of standard NDESP images. Results: We included 1257 patients. Sensitivity estimates for retinopathy grades were: EIDON images; 92.27% (95% CI: 88.43% to 94.69%) for any retinopathy, 99% (95% CI: 95.35% to 100%) for vision-threatening retinopathy and 100% (95% CI: 61% to 100%) for proliferative retinopathy. For NDESP images: 92.26% (95% CI: 88.37% to 94.69%) for any retinopathy, 100% (95% CI: 99.53% to 100%) for vision-threatening retinopathy and 100% (95% CI: 61% to 100%) for proliferative retinopathy. One case of vision-threatening retinopathy (R1M1) was missed by the EyeArt when analysing the EIDON images, but identified by the human graders. The EyeArt identified all cases of vision-threatening retinopathy in the standard images. Conclusion: EyeArt identified diabetic retinopathy in EIDON images with similar sensitivity to standard images in a large-scale screening programme, exceeding the sensitivity threshold recommended for a screening test. Further work to optimise the identification of ‘no retinopathy’ and to understand the differential lesion detection in the two imaging systems would enhance the use of these two innovative technologies in a diabetic retinopathy screening setting

    Cloud-based genomics pipelines for ophthalmology: Reviewed from research to clinical practice

    Get PDF
    Aim: To familiarize clinicians with clinical genomics, and to describe the potential of cloud computing for enabling the future routine use of genomics in eye hospital settings. Design: Review article exploring the potential for cloud-based genomic pipelines in eye hospitals. Methods: Narrative review of the literature relevant to clinical genomics and cloud computing, using PubMed and Google Scholar. A broad overview of these fields is provided, followed by key examples of their integration. Results: Cloud computing could benefit clinical genomics due to scalability of resources, potentially lower costs, and ease of data sharing between multiple institutions. Challenges include complex pricing of services, costs from mistakes or experimentation, data security, and privacy concerns. Conclusions and future perspectives: Clinical genomics is likely to become more routinely used in clinical practice. Currently this is delivered in highly specialist centers. In the future, cloud computing could enable delivery of clinical genomics services in non-specialist hospital settings, in a fast, cost-effective way, whilst enhancing collaboration between clinical and research teams

    Re-evaluating diabetic papillopathy using optical coherence tomography and inner retinal sublayer analysis.

    Get PDF
    BACKGROUND/OBJECTIVES: To re-evaluate diabetic papillopathy using optical coherence tomography (OCT) for quantitative analysis of the peripapillary retinal nerve fibre layer (pRNFL), macular ganglion cell layer (mGCL) and inner nuclear layer (mINL) thickness. SUBJECTS/METHODS: In this retrospective observational case series between June 2008 and July 2019 at Moorfields Eye hospital, 24 eyes of 22 patients with diabetes and optic disc swelling with confirmed diagnosis of NAION or diabetic papillopathy by neuro-ophthalmological assessment were included for evaluation of the pRNFL, mGCL and mINL thicknesses after resolution of optic disc swelling. RESULTS: The mean age of included patients was 56.5 (standard deviation (SD) ± 14.85) years with a mean follow-up duration of 216 days. Thinning of pRNFL (mean: 66.26, SD ± 31.80 µm) and mGCL (mean volume: 0.27 mm3, SD ± 0.09) were observed in either group during follow-up, the mINL volume showed no thinning with 0.39 ± 0.05 mm3. The mean decrease in visual acuity was 4.13 (SD ± 14.27) ETDRS letters with a strong correlation between mGCL thickness and visual acuity (rho 0.74, p < 0.001). CONCLUSION: After resolution of acute optic disc swelling, atrophy of pRNFL and mGCL became apparent in all cases of diabetic papillopathy and diabetic NAION, with preservation of mINL volumes. Analysis of OCT did not provide a clear diagnostic distinction between both entities. We suggest a diagnostic overlay with the degree of pRNFL and mGCL atrophy of prognostic relevance for poor visual acuity independent of the semantics of terminology

    Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment

    Get PDF
    OBJECTIVE: To evaluate the role of automated optical coherence tomography (OCT) segmentation, using a validated deep-learning model, for assessing the effect of C3 inhibition on the area of geographic atrophy (GA); the constituent features of GA on OCT (photoreceptor degeneration (PRD), retinal pigment epithelium (RPE) loss and hypertransmission); and the area of unaffected healthy macula.To identify OCT predictive biomarkers for GA growth. METHODS: Post hoc analysis of the FILLY trial using a deep-learning model for spectral domain OCT (SD-OCT) autosegmentation. 246 patients were randomised 1:1:1 into pegcetacoplan monthly (PM), pegcetacoplan every other month (PEOM) and sham treatment (pooled) for 12 months of treatment and 6 months of therapy-free monitoring. Only participants with Heidelberg SD-OCT were included (n=197, single eye per participant).The primary efficacy endpoint was the square root transformed change in area of GA as complete RPE and outer retinal atrophy (cRORA) in each treatment arm at 12 months, with secondary endpoints including RPE loss, hypertransmission, PRD and intact macular area. RESULTS: Eyes treated PM showed significantly slower mean change of cRORA progression at 12 and 18 months (0.151 and 0.277 mm, p=0.0039; 0.251 and 0.396 mm, p=0.039, respectively) and RPE loss (0.147 and 0.287 mm, p=0.0008; 0.242 and 0.410 mm, p=0.00809). PEOM showed significantly slower mean change of RPE loss compared with sham at 12 months (p=0.0313). Intact macular areas were preserved in PM compared with sham at 12 and 18 months (p=0.0095 and p=0.044). PRD in isolation and intact macula areas was predictive of reduced cRORA growth at 12 months (coefficient 0.0195, p=0.01 and 0.00752, p=0.02, respectively) CONCLUSION: The OCT evidence suggests that pegcetacoplan slows progression of cRORA overall and RPE loss specifically while protecting the remaining photoreceptors and slowing the progression of healthy retina to iRORA

    Evaluating the Effects of C3 Inhibition on Geographic Atrophy Progression from Deep-Learning OCT Quantification:A Split-Person Study

    Get PDF
    Introduction: To evaluate the effect pegcetacoplan, a C3 and C3b inhibitor, on the rate of progression of geographic atrophy (GA) as assessed by spectral domain optical coherence tomography (SD-OCT) using a split-person study design and deep-learning quantification. Methods: A post hoc analysis of phase 2 FILLY trial data comparing study (treated monthly, treated every other month and sham-treated) and fellow (untreated) eyes in a split-person study design was performed. This analysis included 288 eyes from 144 patients with bilateral GA from the FILLY phase 2 trial (Clinical Trials identifier: NCT02503332). Only patients with bilateral GA and without evidence of choroidal neovascularisation in either eye were included. Patient study eyes were treated with sham injections or with pegcetacoplan monthly (PM) or every other month (PEOM) for 12 months. SD-OCT scans of study and fellow eyes taken at baseline and 12 months were used for the analysis. The main outcomes were the annual change in the area of retinal pigment epithelial and outer retinal atrophy (RORA), its constituent features (photoreceptor degeneration [PRD], retinal pigment epithelium [RPE] loss, hypertransmission) and intact macula as compared to the untreated fellow eye. Results: Annual GA growth was reduced in eyes treated with PM versus untreated fellow eyes for OCT features, including RORA (study eye 0.792 vs. fellow eye 1.13 mm2; P = 0.003), PRD (0.739 vs. 1.23 mm2; P = 0.015), RPE-loss (0.789 vs. 1.17 mm2; P = 0.007) and intact macula (− 0.735 vs. − 1.29 mm2; P = 0.011). Similar (but not statistically significant) trends were observed with the PEOM treatment or when GA was quantified with fundus autofluorescence (FAF). The sham treatment demonstrated no effect. Pearson correlation coefficients showed concordance in the enlargement rate of GA between the study and fellow eyes in the sham (R = 0.64) and PEOM (R = 0.68) groups, but not in the PM group (R = 0.21). Conclusions: Pegcetacoplan-treated eyes demonstrated a reduction in spatial GA progression compared to their untreated counterparts. This effect was more evident on OCT than with FAF. Trial Registration: Clinical Trials identifier: NCT02503332.</p

    Evaluating the Effects of C3 Inhibition on Geographic Atrophy Progression from Deep-Learning OCT Quantification: A Split-Person Study

    Get PDF
    INTRODUCTION: To evaluate the effect pegcetacoplan, a C3 and C3b inhibitor, on the rate of progression of geographic atrophy (GA) as assessed by spectral domain optical coherence tomography (SD-OCT) using a split-person study design and deep-learning quantification. METHODS: A post hoc analysis of phase 2 FILLY trial data comparing study (treated monthly, treated every other month and sham-treated) and fellow (untreated) eyes in a split-person study design was performed. This analysis included 288 eyes from 144 patients with bilateral GA from the FILLY phase 2 trial (Clinical Trials identifier: NCT02503332). Only patients with bilateral GA and without evidence of choroidal neovascularisation in either eye were included. Patient study eyes were treated with sham injections or with pegcetacoplan monthly (PM) or every other month (PEOM) for 12 months. SD-OCT scans of study and fellow eyes taken at baseline and 12 months were used for the analysis. The main outcomes were the annual change in the area of retinal pigment epithelial and outer retinal atrophy (RORA), its constituent features (photoreceptor degeneration [PRD], retinal pigment epithelium [RPE] loss, hypertransmission) and intact macula as compared to the untreated fellow eye. RESULTS: Annual GA growth was reduced in eyes treated with PM versus untreated fellow eyes for OCT features, including RORA (study eye 0.792 vs. fellow eye 1.13 mm2; P = 0.003), PRD (0.739 vs. 1.23 mm2; P = 0.015), RPE-loss (0.789 vs. 1.17 mm2; P = 0.007) and intact macula (- 0.735 vs. - 1.29 mm2; P = 0.011). Similar (but not statistically significant) trends were observed with the PEOM treatment or when GA was quantified with fundus autofluorescence (FAF). The sham treatment demonstrated no effect. Pearson correlation coefficients showed concordance in the enlargement rate of GA between the study and fellow eyes in the sham (R = 0.64) and PEOM (R = 0.68) groups, but not in the PM group (R = 0.21). CONCLUSIONS: Pegcetacoplan-treated eyes demonstrated a reduction in spatial GA progression compared to their untreated counterparts. This effect was more evident on OCT than with FAF. TRIAL REGISTRATION: Clinical Trials identifier: NCT02503332

    Feasibility of Automated Deep Learning Design for Medical Image Classification by Healthcare Professionals with Limited Coding Experience

    Get PDF
    Deep learning has huge potential to transform healthcare. However, significant expertise is required to train such models and this is a significant blocker for their translation into clinical practice. In this study, we therefore sought to evaluate the use of automated deep learning software to develop medical image diagnostic classifiers by healthcare professionals with limited coding – and no deep learning – expertise. We used five publicly available open-source datasets: (i) retinal fundus images (MESSIDOR); (ii) optical coherence tomography (OCT) images (Guangzhou Medical University/Shiley Eye Institute, Version 3); (iii) images of skin lesions (Human against Machine (HAM)10000) and (iv) both paediatric and adult chest X-ray (CXR) images (Guangzhou Medical University/Shiley Eye Institute, Version 3 and the National Institute of Health (NIH)14 dataset respectively) to separately feed into a neural architecture search framework that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we performed external validation using the Edinburgh Dermofit Library dataset. Diagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (range: sensitivity of 73.3-97.0%, specificity of 67-100% and AUPRC of 0.87-1). In the multiple classification tasks, the diagnostic properties ranged from 38-100% for sensitivity and 67-100% for specificity. The discriminative performance in terms of AUPRC ranged from 0.57 to 1 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0.47, with a sensitivity of 49% and a positive predictive value of 52%. The quality of the open-access datasets used in this study (including the lack of information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitation of this study. All models, except for the automated deep learning model trained on the multi-label classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The availability of automated deep learning may become a cornerstone for the democratization of sophisticated algorithmic modelling in healthcare as it allows the derivation of classification models without requiring a deep understanding of the mathematical, statistical and programming principles. Future studies should compare several application programming interfaces on thoroughly curated datasets
    corecore