781 research outputs found
Present and Future Gamma-Ray Probes of the Cygnus OB2 Environment
The MAGIC Collaboration has provided new observational data pertaining to the
TeV J2032+4130 gamma-ray source (within the Cygnus OB2 region), for energies
E_gamma >400 GeV. It is then appropriate to update the impact of these data on
gamma-ray production mechanisms in stellar associations. We consider two
mechanisms of gamma-ray emission, pion production and decay (PION) and
photo-excitation of high-energy nuclei followed by prompt photo-emission from
the daughter nuclei (A*). We find that while the data can be accommodated with
either scenario, the A* features a spectral bump, corresponding to the
threshold for exciting the Giant Dipole Resonance, which can serve to
discriminate between them. We comment on neutrino emission and detection from
the region if the PION and/or A* processes are operative. We also touch on the
implications for this analysis of future Fermi and Cerenkov Telescope Array
data.Comment: 6 pp, 2 figs. Matching version publihed in Phys. Rev.
Microscopic Calculation of Total Ordinary Muon Capture Rates for Medium - Weight and Heavy Nuclei
Total Ordinary Muon Capture (OMC) rates are calculated on the basis of the
Quasiparticle Random Phase Approximation for several spherical nuclei from
90^Zr to 208^Pb. It is shown that total OMC rates calculated with the free
value of the axial-vector coupling constant g_A agree well with the
experimental data for medium-size nuclei and exceed considerably the
experimental rates for heavy nuclei. The sensitivity of theoretical OMC rates
to the nuclear residual interactions is discussed.Comment: 27 pages and 3 figure
Swift Highly Charged Ion Channelling
We review recent experimental and theoretical progress made in the scope of
swift highly charged ion channelling in crystals. The usefulness of such
studies is their ability to yield impact parameter information on charge
transfer processes, and also on some time related problems. We discuss the
cooling and heating phenomena at MeV/u energies, results obtained with
decelerated H-like ion beams at GSI and with ions having an excess of electrons
at GANIL, the superdensity effect along atomic strings and Resonant Coherent
Excitation.Comment: to be published in Journal of Physics
Working Group Report on the "TeV Particle Astrophysics and Physics Beyond the Standard Model"
This working group focused mainly on the complementarity among particle
physics and astrophysics. The analysis of data from both fields will better
constrain theoretical models. Much of the discussion focused on detecting dark
matter and susy particles, and on the potential of neutrino and gamma-ray
astrophysics for seeking or constraining new physics.Comment: Report on Working Group in the TeV Particle Astrophysics Workshop II
- Madison - Aug 200
Parametrization of the angular correlation and degree of linear polarization in two-photon decays of hydrogen-like ions
The two-photon decay in hydrogen-like ions is investigated within the
framework of second order perturbation theory and Dirac's relativistic
equation. Special attention is paid to the angular correlation of the emitted
photons as well as to the degree of linear polarization of one of the two
photons, if the second is just observed under given angles. Expressions for the
angular correlation and the degree of linear polarization are expanded in terms
of -polynomials, whose coefficients depend on the atomic number and
the energy sharing of the emitted photons. The effects of including higher
(electric and magnetic) multipoles upon the emitted photon pairs beyond the
electric-dipole approximation are also discussed. Calculations of the
coefficients are performed for the transitions ,
and , along the
entire hydrogen isoelectronic sequence ()
Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen
A relativistic analysis of the polarization properties of light elastically
scattered by atomic hydrogen is performed, based on the Dirac equation and
second order perturbation theory. The relativistic atomic states used for the
calculations are obtained by making use of the finite basis set method and
expressed in terms of splines and polynomials. We introduce two
experimental scenarios in which the light is circularly and linearly polarized,
respectively. For each of these scenarios, the polarization-dependent angular
distribution and the degrees of circular and linear polarization of the
scattered light are investigated as a function of scattering angle and photon
energy. Analytical expressions are derived for the polarization-dependent
angular distribution which can be used for scattering by both hydrogenic as
well as many-electron systems. Detailed computations are performed for Rayleigh
scattering by atomic hydrogen within the incident photon energy range 0.5 to 10
keV. Particular attention is paid to the effects that arise from higher
(nondipole) terms in the expansion of the electron-photon interaction.Comment: 8 pages, 5 figure
Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen
We study the total cross section and angular distribution in Rayleigh
scattering by hydrogen atom in the ground state, within the framework of Dirac
relativistic equation and second-order perturbation theory. The relativistic
states used for the calculations are obtained by making use of the finite basis
set method and expressed in terms of B-splines and B-polynomials. We pay
particular attention to the effects that arise from higher (non-dipole) terms
in the expansion of the electron-photon interaction. It is shown that the
angular distribution of scattered photons, while it is symmetric with respect
to the scattering angle =90 within the electric dipole
approximation, becomes asymmetric when higher multipoles are taken into
account. The analytical expression of the angular distribution is parametrized
in terms of Legendre polynomials. Detailed calculations are performed for
photons in the energy range 0.5 to 10 keV. When possible, results are compared
with previous calculations.Comment: 8 pages, 5 figure
On the Strength of Spin-Isospin Transitions in A=28 Nuclei
The relations between the strengths of spin-isospin transition operators
extracted from direct nuclear reactions, magnetic scattering of electrons and
processes of semi-leptonic weak interactions are discussed.Comment: LaTeX, 8 pages, 1Postscript with figur
Angular distribution studies on the two-photon ionization of hydrogen-like ions: Relativistic description
The angular distribution of the emitted electrons, following the two-photon
ionization of the hydrogen-like ions, is studied within the framework of second
order perturbation theory and the Dirac equation. Using a density matrix
approach, we have investigated the effects which arise from the polarization of
the incoming light as well as from the higher multipoles in the expansion of
the electron--photon interaction. For medium- and high-Z ions, in particular,
the non-dipole contributions give rise to a significant change in the angular
distribution of the emitted electrons, if compared with the electric-dipole
approximation. This includes a strong forward emission while, in dipole
approxmation, the electron emission always occurs symmetric with respect to the
plane which is perpendicular to the photon beam. Detailed computations for the
dependence of the photoelectron angular distributions on the polarization of
the incident light are carried out for the ionization of H, Xe, and
U (hydrogen-like) ions.Comment: 16 pages, 4 figures, published in J Phys
- …