92 research outputs found

    Dynamics of Nafion membrane swelling in H2O/D2O mixtures as studied using FTIR technique

    Get PDF
    Experiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8–2.15 μm. The experiments were carried out using two protocols: in the first protocol we studied the dynamics of Nafion swelling in H2O + D2O mixtures for the deuterium concentrations 3 < C < 104 ppm, and in the second protocol we studied the dynamics of swelling in pure heavy water (C = 106 ppm). For liquid mixtures in the concentration range 3 < C < 104 ppm, the transmittance spectra are the same, but for Nafion soaked in these fluids, the corresponding spectra are different. It is shown that, in the range of deuterium contents C = 90–500 ppm, the behavior of transmittance of the polymer membrane is non-monotonic. In experiments using the second protocol, the dynamics of diffusion replacement of residual water, which is always present in the bulk of the polymer membrane inside closed cavities (i.e., without access to atmospheric air), were studied. The experimentally estimated diffusion coefficient for this process is ≈6·10−11 cm2/s.This study was supported by Grant from the President of the Russian Federation for young scientists (MD-3811.2018.11), the Russian Foundation for Basic Research, Grant Nos. 17-02-00214, 16-52- 540001, R&D program (AAAA-A18-118021390190-1), and the MEPhI Academic Excellence Project (Contract No. 02.a03.21.0005)

    Interaction between the microbiome and TP53 in human lung cancer.

    Get PDF
    BACKGROUND: Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort. RESULTS: Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas. CONCLUSIONS: The results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Regulation of Aggregatibacter (Actinobacillus) actinomycetemcomitans Leukotoxin Secretion by Iron

    No full text
    The gram-negative oral and systemic pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans produces a leukotoxin (LtxA) that is a member of the RTX (repeats in toxin) family of secreted bacterial toxins. We have recently shown that LtxA has the ability to lyse erythrocytes, which results in a beta-hemolytic phenotype on Columbia blood agar. To determine if LtxA is regulated by iron, we examined beta-hemolysis under iron-rich and iron-limiting conditions. Beta-hemolysis was suppressed in the presence of FeCl(3). In contrast, strong beta-hemolysis occurred in the presence of the iron chelator deferoxamine. We found that secretion of LtxA was completely inhibited by free iron, but expression of ltxA was not regulated by iron. Free chromium, cobalt, and magnesium did not affect LtxA secretion. Other LtxA-associated genes were not regulated by iron. Thus, iron appears to play an important role in the regulation of LtxA secretion in A. actinomycetemcomitans in a manner independent of gene regulation

    Organ Printing: Past, Present and Future

    No full text
    Organ printing technology could be defined as an automated, robotic and computeraided layer by layer additive biofabrication of functional 3D tissue and organ constructs using living tissue spheroids as building blocks. The concept of organ printing has been introduced a decade ago as a potentially superior alternative to conventional solid scaffold-based tissue engineering. The organ printing technology consists of three main steps: (i) pre-processing or design of blueprint for bioprinting of human organ; (ii) processing or actual 3D bioprinting using bioink or self-assembling tissue spheroids, biopaper or bioprintable, biocompatible and sacrificial hydrogel and bioprinter or automatic computer-aided robotic dispenser; and finally, (iii) postprocessing or bioreactor-based accelerated tissue maturation. During last decade 3D bioprinting technology has been advances and broadly recognized a new research paradigm and new exciting research direction in tissue engineering and regenerative medicine. Moreover, commercialization of 3D bioprinting technology is already an ongoing process. The design of next generation of 3D bioprinters and industrial scale complete organ biofabrication line will be presented and discussed.Published versio
    corecore