3 research outputs found

    Etude du comportement electromagnetique des milieux heterogenes en ondes centimetriques, modelisation

    No full text
    SIGLEINIST T 73608 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    CENBG Control System and Specific Instrumentation Developments for SPIRAL2-DESIR Setups

    No full text
    International audienceThe DESIR facility will be in few years the SPIRAL2 experimental hall at GANIL dedicated to the study of nuclear structure, astrophysics and weak interaction at low energy. Exotic ions produced by the new S3 facility and SPIRAL1 complex will be transferred to high precision experiments in the DESIR building. To guaranty high purity beams to perform high precision measurements on specific nuclei, three main devices are currently being developed at CENBG: a High Resolution Separator (HRS), a General Purpose Ion Buncher (GPIB) and a double Penning Trap named ’PIPERADE’. The Control System (CS) developments we made at CENBG are already used to commission these devices. We present here beamline equipment CS solutions and the global architecture of this SPIRAL2 EPICS based CS.To answer specific needs, instrumental solutions have been developed like PPG used to optimize bunch timing and also used as traps conductor. Recent development using the cost efficient Redpitaya board with an embedded EPICS server will be described. This device used to drive a FCup amplifier and is also used for particle counting and time of flight measurements using our FPGA implementation called ’RedPiTOF’

    Commissioning of the DESIR High-Resolution Separator at CENBG

    No full text
    International audienceDESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. The high-resolution mass separator (HRS) included in DESIR is a 180 degree symmetric online separator with two 90 degree magnetic dipole sections arranged with electrostatic quadrupoles, sextupoles and a multipole on the mid plane. The HRS is now completely mounted at CENBG and under commissioning for the next 2 to 3 years before its transfer at the entrance of the DESIR facility. The objective is to test, characterise and correct all HRS elements contributing to the higher order aberration by performing experimental measurements and comparing them with the results from different simulation tools. The recently mounted pepperpot-type emittance-meter will allow us to observe the emittance figures and dynamically tune the multipole to improve the optical parameters of the HRS. We will present the first results concerning the hexapolar correction with the multipole, the associated emittance measurements and the resolution currently achieved
    corecore