11 research outputs found

    Frontline community health care workers’ intervention for diabetes management in resource limited settings : a qualitative study on perspectives of key stakeholders

    Get PDF
    ACKNOWLEDGMENTS We would like to acknowledge the patients with diabetes and the diabetes community health workers who participated in the lengthy interviews despite their busy schedules. We thank the translators who were well versed in both languages in supporting the researchers during data collection. We would like to thank the whole team in completing the study on time by travelling to the homes of patients in rural and remote areas. FUNDING We acknowledge the funding received from Friends of Vellore, UK and NHS Grampian Endowment fund, University of Aberdeen- Approval Number: EA0852Peer reviewedPublisher PD

    Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. METHODS: Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. FINDINGS: Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2·2% (95% uncertainty interval [UI] 1·5–3·0) of age-standardised female deaths and 6·8% (5·8–8·0) of age-standardised male deaths. Among the population aged 15–49 years, alcohol use was the leading risk factor globally in 2016, with 3·8% (95% UI 3·2–4·3) of female deaths and 12·2% (10·8–13·6) of male deaths attributable to alcohol use. For the population aged 15–49 years, female attributable DALYs were 2·3% (95% UI 2·0–2·6) and male attributable DALYs were 8·9% (7·8–9·9). The three leading causes of attributable deaths in this age group were tuberculosis (1·4% [95% UI 1·0–1·7] of total deaths), road injuries (1·2% [0·7–1·9]), and self-harm (1·1% [0·6–1·5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27·1% (95% UI 21·2–33·3) of total alcohol-attributable female deaths and 18·9% (15·3–22·6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0·0–0·8) standard drinks per week. INTERPRETATION: Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption. FUNDING: Bill & Melinda Gates Foundation

    Discerning heat transfer in building materials

    No full text
    The function of a building is to ensure safety and thermal comfort for healthy living conditions. Buildings primarily comprise an envelope, which acts as an interface separating the external environment from the indoors environment. The building envelope is primarily responsible for regulating indoor thermal comfort in response to external climatic conditions. It usually comprises a configuration of building materials to thus far provide requisite structural performance. However, studies into building-envelope configurations to provide a particular thermal performance are limited. As the building envelope is exposed to the external environment there will be heat and moisture transfer to the indoor environment through it. The overall phenomenon of heat and moisture transfer depends on the microstructure and configuration within the building material. Further, thermal property of a material is generally dependent on its microstructure, which comprises a network of pores and particles arranged in a definite structure. Thermal behaviour of a building material thus depends on the thermal conductivities of the solid particles, pore micro-structure and its constituent fluid (air and/or moisture). The thermal response of a building envelope is determined by the thermal characteristics of the individual building materials and its configuration. Understanding the heat transfer influenced by the complex networks of pores and particles is a relatively new study in the area of building climatic-response. The current study reviews the heat-transfer mechanisms that determine the thermal performance of a building material attributed to its micro-structure. A theoretical basis for the same is being evolved and its relevance in regulating heat-transfer through building envelopes, walls in particular, is reviewed in this paper. (C) 2014 N.C. Balaji. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

    Studies into structural and thermal properties of building envelope materials

    No full text
    The structural and thermal properties of masonry units influence the behaviour of masonry. In load bearing masonry, wall elements play a major role in supporting the structure through load transfer mechanism from roof to foundation. Also, wall elements regulate the thermal interaction between the indoor and outdoor environment. A variety of masonry units are available as an alternative to burnt clay brick masonry. Fly ash-Lime-Gypsum (FaL-G) brick is one such alternative, which is a low carbon and energy efficient brick made of industrial waste fly-ash. The current paper investigates the characteristic properties of FaL-G bricks and compares them with the locally available conventional table moulded brick (TMB). The characteristic results reveal that the FaL-G brick performs better as a masonry unit and also for building envelopes in tropical conditions. Based on investigations regarding structural and thermal performance, suitable guidelines can be issued to integrate this material in the building envelope. (C) 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the scientific committee of the CISBAT 2017 International Conference Future Buildings & Districts Energy Efficiency from Nano to Urban Scal

    Host plant interactions of the corn planthopper, Peregrinus maidis Ashm. (Homoptera: Delphacidae) in maize and sorghum agroecosystems

    No full text
    corecore