75 research outputs found
Opportunistic Research in Rural Areas through Community Health Worker Training: A Cost-effective method of Researching Medication Misuse in Rural India
Background: In India it is estimated that one third of expenditure of households is spent on health related expenses, and medication purchases make up a large proportion of these costs. Objective: To investigate a novel methodology, which was cost effective, to collect large amounts of data to further understand medication purchases and misuse in rural India. Methods: This study explores the research approach that was conducted in 2012-13 by Layleaders enrolled in the Community Lay-Leaders’ Health Certificate Program initiative by Christian Medical College (CMC), Vellore, India. Results: The methodology demonstrated a large data collection capacity, where 100 Layleaders participated and collected over 5000 surveys across 515 villages in North, Central and North East India. Conclusions: Incorporating opportunistic research methods into community health worker training can be a cost effective way to collect meaningful and useful data in rural India. This study demonstrates a successful methodology that may be transferable to other rural areas and others conducting research training as part of community health worker training should consider such opportunistic research
A Coupled SWAT-AEM Modelling Framework for a Comprehensive Hydrologic Assessment
This study attempts to integrate a Surface Water (SW) model Soil and Water Assessment Tool (SWAT) with an existing steady-state, single layer, unconfined heterogeneous aquifer Analytic Element Method (AEM) based Ground Water (GW) model, named Bluebird AEM engine, for a comprehensive assessment of SW and GW resources and its management. The main reason for integrating SWAT with the GW model is that the SWAT model does not simulate the distribution and dynamics of GW levels and recharge rates. To overcome this issue, often the SWAT model is coupled with the numerical GW model (either using MODFLOW or FEFLOW), wherein the spatial and temporal patterns of the interactions are better captured and assessed. However, the major drawback in integrating the two models (SWAT with—MODFLOW/FEM) is its conversion from Hydrological Response Unit’s (HRU)/sub-basins to grid/elements. To couple them, a spatial translation system is necessary to move the inputs and outputs back and forth between the two models due to the difference in discretization. Hence, for effective coupling of SW and GW models, it may be desirable to have both models with a similar spatial discretization and reduce the need for rigorous numerical techniques for solving the PDEs. The objective of this paper is to test the proof of concept of integrating a distributed hydrologic model with an AEM model at the same spatial units, primarily focused on surface water and groundwater interaction with a shallow unconfined aquifer. Analytic Element Method (AEM) based GW models seem to be ideal for coupling with SWAT due to their innate character to consider the HRU, sub-basin, River, and lake boundaries as individual analytic elements directly without the need for any further discretization or modeling units. This study explores the spatio-temporal patterns of groundwater (GW) discharge rates to a river system in a moist-sub humid region with SWAT-AEM applied to the San Jacinto River basin (SJRB) in Texas. The SW-GW interactions are explored throughout the watershed from 2000–2017 using the integrated SWAT-AEM model, which is tested against stream flow and GW levels. The integrated SWAT-AEM model results show good improvement in predicting the stream flow (R2 = 0.65–0.80) and GW levels as compared to the standalone SWAT model. Further, the integrated model predicted the low flows better compared to the standalone SWAT model, thus accounting for the SW-GW interactions. Almost 80% of the stream network experiences an increase in groundwater discharge rate between 2000 and 2017 with an annual average GW discharge rate of 1853 Mm3/year. The result from the study seems promising for potential applications of SWAT-AEM coupling in regions with considerable SW-GW interactions
A Coupled SWAT-AEM Modelling Framework for a Comprehensive Hydrologic Assessment
This study attempts to integrate a Surface Water (SW) model Soil and Water Assessment Tool (SWAT) with an existing steady-state, single layer, unconfined heterogeneous aquifer Analytic Element Method (AEM) based Ground Water (GW) model, named Bluebird AEM engine, for a comprehensive assessment of SW and GW resources and its management. The main reason for integrating SWAT with the GW model is that the SWAT model does not simulate the distribution and dynamics of GW levels and recharge rates. To overcome this issue, often the SWAT model is coupled with the numerical GW model (either using MODFLOW or FEFLOW), wherein the spatial and temporal patterns of the interactions are better captured and assessed. However, the major drawback in integrating the two models (SWAT with—MODFLOW/FEM) is its conversion from Hydrological Response Unit’s (HRU)/sub-basins to grid/elements. To couple them, a spatial translation system is necessary to move the inputs and outputs back and forth between the two models due to the difference in discretization. Hence, for effective coupling of SW and GW models, it may be desirable to have both models with a similar spatial discretization and reduce the need for rigorous numerical techniques for solving the PDEs. The objective of this paper is to test the proof of concept of integrating a distributed hydrologic model with an AEM model at the same spatial units, primarily focused on surface water and groundwater interaction with a shallow unconfined aquifer. Analytic Element Method (AEM) based GW models seem to be ideal for coupling with SWAT due to their innate character to consider the HRU, sub-basin, River, and lake boundaries as individual analytic elements directly without the need for any further discretization or modeling units. This study explores the spatio-temporal patterns of groundwater (GW) discharge rates to a river system in a moist-sub humid region with SWAT-AEM applied to the San Jacinto River basin (SJRB) in Texas. The SW-GW interactions are explored throughout the watershed from 2000–2017 using the integrated SWAT-AEM model, which is tested against stream flow and GW levels. The integrated SWAT-AEM model results show good improvement in predicting the stream flow (R2 = 0.65–0.80) and GW levels as compared to the standalone SWAT model. Further, the integrated model predicted the low flows better compared to the standalone SWAT model, thus accounting for the SW-GW interactions. Almost 80% of the stream network experiences an increase in groundwater discharge rate between 2000 and 2017 with an annual average GW discharge rate of 1853 Mm3/year. The result from the study seems promising for potential applications of SWAT-AEM coupling in regions with considerable SW-GW interactions
Performance validation of a cascade control system through
The work analyzes the performance characteristics of a cascade control system when interconnected with various network architectures, such as Internet, mobile and wireless networks. The cascade control system consists of level and flow as primary and secondary variables, respectively. The web-enabled monitoring and control are realized using three techniques namely remote client–server, ActiveX-data socket and web publishing tool. Mobile network is established by interfacing the control system with a GSM modem which enables the monitoring of process parameters through mobile phones. The cascade control system is also monitored wirelessly from remote locations with advent of an indigenous wireless sensor node. The performance analysis proved that wireless monitoring may be considered as an effective alternate technique to the Internet-based communication especially for shorter distances
Evaluation of augmented infiltration based LIDs for low lying urbanizing coastal catchments: a case study of Chennai city, India
The study assessed the effectiveness of infiltration-based Low Impact Development (LID) techniques and augmented infiltration LIDs (such as recharge shaft) in a coastal urban catchment in India using a semi-coupled approach between numerical models VS2DI and Storm Water Management Model (SWMM). Site specific VS2DI modelling indicated that the infiltration LIDs resulted in more saturation excess runoff due to the soil’s insufficient hydraulic conductivity and increased lateral flow. Catchment-scale modeling indicated that LIDs significantly improved water retention (p ≪ 0.05), with a 35% reduction in total runoff volume. The recharge shafts were shown to be more efficient in reducing runoff volume and peak runoff, particularly for high runoff rates (more than 22 mm/hr). The study suggests that direct recharge to the aquifer through recharge shafts could be a suitable solution to manage runoff and meet the demand for domestic water supply during times of water scarcity in coastal urban catchments.</p
Oral health knowledge and practices among school teachers in rural and urban areas of Chennai, Tamil Nadu: A questionnaire survey
Introduction: School teachers play a vital role in the overall development of a child. They can be used to combat diseases of a preventable nature as alternate personnel in primary health care. With proper knowledge and oral health practices, they can contribute to the health education of children and act as role models for the general community at large. Aims: To assess and compare the knowledge and practices regarding oral health among school teachers in rural and urban areas in Chennai, Tamil Nadu, India. Materials and Methods: A questionnaire consisting of 15 close-ended questions on oral heath knowledge and practices was formulated and distributed among 200 school teachers in rural and urban areas in Chennai, Tamil Nadu, India. The data obtained were subjected to statistical analysis using SPSS software version 17, and Chi-square test was used to assess the differences in the proportions for various questions. P < 0.05 was considered statistically significant. Results: The school teachers in both rural and urban areas had limited knowledge on oral health. The extent of knowledge and oral hygiene practices among the urban school teachers was found to be comparatively higher than those of the rural school teachers. Further, 11% of the urban school teachers and 53% of the rural school teachers did not discuss oral hygiene practices with their students (P < 0.001). Conclusions: The school teachers in both rural and urban areas had limited knowledge on oral health. The extent of knowledge and oral hygiene practices among the urban school teachers was found to be comparatively higher than those of the rural school teachers
Current knowledge on alleviating Helicobacter pylori infections through the use of some commonly known natural products: bench to bedside
Helicobacter pylori, a spiral-shaped Gram-negative bacterium, has been classified as a class I carcinogen by the World Health Organization and recognized as the causative agent for peptic ulcers, duodenal ulcer, gastritis, mucosa-associated lymphoid tissue lymphomas, and gastric cancer. Owing to their alarming rate of drug resistance, eradication of H. pylori remains a global challenge. Triple therapy consisting of a proton pump inhibitor, clarithromycin, and either amoxicillin or metronidazole, is generally the recommended standard for the treatment of H. pylori infection. Complementary and alternative medicines have a long history in the treatment of gastrointestinal ailments and various compounds has been tested for anti-H. pylori activity both in vitro and in vivo; however, their successful use in human clinical trials is sporadic. Hence, the aim of this review is to analyze the role of some well-known natural products that have been tested in clinical trials in preventing, altering, or treating H. pylori infections. Whereas some in vitro and in vivo studies in the literature have demonstrated the successful use of a few potential natural products for the treatment of H. pylori-related infections, others indicate a need to consider natural products, with or without triple therapy, as a useful alternative in treating H. pylori-related infections. Thus, the reported mechanisms include killing of H. pylori urease inhibition, induction of bacterial cell damage, and immunomodulatory effect on the host immune system. Furthermore, both in vitro and in vivo studies have demonstrated the successful use of some potential natural products for the treatment of H. pylori-related infections. Nevertheless, the routine prescription of potential complementary and alternative medicines continues to be restrained, and evidence on the safety and efficacy of the active compounds remains a subject of ongoing debate
Ozone therapy in musculoskeletal medicine: a comprehensive review
Abstract Musculoskeletal disorders encompass a wide range of conditions that impact the bones, joints, muscles, and connective tissues within the body. Despite the ongoing debate on toxicity and administration, ozone demonstrated promise in managing several musculoskeletal disorders, modulating pain and inflammation. A literature search was conducted. The research design, methods, findings, and conclusions of the studies were then examined to evaluate the physiological effects, clinical application, controversies, and safety of the application of ozone in musculoskeletal medicine. Ozone application demonstrates considerable therapeutic applications in the management of musculoskeletal disorders, including fractures, osteoarthritis, and chronic pain syndromes. Despite these advantages, studies have raised concerns regarding its potential toxicity and emphasized the importance of adhering to stringent administration protocols to ensure safety. Additionally, heterogeneities in patient reactions and hazards from oxidizing agents were observed. Given its anti-inflammatory and analgesic qualities, ozone therapy holds potential in the management of several musculoskeletal disorders. Additional high-quality research with long follow-up is required to refine indications, efficacy and safety profile. Finally, for wider clinical acceptability and utilization, the development of international recommendations is essential
Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.
The unfolded protein response (UPR) is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER). In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α), activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold) and PERK (up to 8 fold) genes 12-48 hours after infection with self-complementary (sc)AAV2 but less prominent with single-stranded (ss)AAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold) while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold) in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively). However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin) during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer
- …