85 research outputs found

    Linear response formula for piecewise expanding unimodal maps

    Full text link
    The average R(t) of a smooth function with respect to the SRB measure of a smooth one-parameter family f_t of piecewise expanding interval maps is not always Lipschitz. We prove that if f_t is tangent to the topological class of f_0, then R(t) is differentiable at zero, and the derivative coincides with the resummation previously proposed by the first named author of the (a priori divergent) series given by Ruelle's conjecture.Comment: We added Theorem 7.1 which shows that the horizontality condition is necessary. The paper "Smooth deformations..." containing Thm 2.8 is now available on the arxiv; see also Corrigendum arXiv:1205.5468 (to appear Nonlinearity 2012

    Dissipation time and decay of correlations

    Full text link
    We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and its associated propagators: spectral properties, local expansivity, and global mixing properties. We show that the dissipation is slow for a general class of non-weakly-mixing maps; on the opposite, it is fast for a large class of exponentially mixing systems which include uniformly expanding maps and Anosov diffeomorphisms.Comment: 26 Pages, LaTex. Submitted to Nonlinearit

    Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    Get PDF
    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor

    Convergence of invariant densities in the small-noise limit

    Full text link
    This paper presents a systematic numerical study of the effects of noise on the invariant probability densities of dynamical systems with varying degrees of hyperbolicity. It is found that the rate of convergence of invariant densities in the small-noise limit is frequently governed by power laws. In addition, a simple heuristic is proposed and found to correctly predict the power law exponent in exponentially mixing systems. In systems which are not exponentially mixing, the heuristic provides only an upper bound on the power law exponent. As this numerical study requires the computation of invariant densities across more than 2 decades of noise amplitudes, it also provides an opportunity to discuss and compare standard numerical methods for computing invariant probability densities.Comment: 27 pages, 19 figures, revised with minor correction

    Rare events, escape rates and quasistationarity: some exact formulae

    Full text link
    We present a common framework to study decay and exchanges rates in a wide class of dynamical systems. Several applications, ranging form the metric theory of continuons fractions and the Shannon capacity of contrained systems to the decay rate of metastable states, are given

    A quantization procedure based on completely positive maps and Markov operators

    Full text link
    We describe ω\omega-limit sets of completely positive (CP) maps over finite-dimensional spaces. In such sets and in its corresponding convex hulls, CP maps present isometric behavior and the states contained in it commute with each other. Motivated by these facts, we describe a quantization procedure based on CP maps which are induced by Markov (transfer) operators. Classical dynamics are described by an action over essentially bounded functions. A non-expansive linear map, which depends on a choice of a probability measure, is the centerpiece connecting phenomena over function and matrix spaces

    Analyticity of the SRB measure of a lattice of coupled Anosov diffeomorphisms of the torus

    Full text link
    We consider the "thermodynamic limit"of a d-dimensional lattice of hyperbolic dynamical systems on the 2-torus, interacting via weak and nearest neighbor coupling. We prove that the SRB measure is analytic in the strength of the coupling. The proof is based on symbolic dynamics techniques that allow us to map the SRB measure into a Gibbs measure for a spin system on a (d+1)-dimensional lattice. This Gibbs measure can be studied by an extension (decimation) of the usual "cluster expansion" techniques.Comment: 28 pages, 2 figure

    Ruelle-Perron-Frobenius spectrum for Anosov maps

    Full text link
    We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (Information on the existence of an SRB measure, its smoothness properties and statistical properties readily follow from such a result.) In dimension d=2d=2 we show that the transfer operator associated to smooth random perturbations of the map is close, in a proper sense, to the unperturbed transfer operator. This allows to obtain easily very strong spectral stability results, which in turn imply spectral stability results for smooth deterministic perturbations as well. Finally, we are able to implement an Ulam type finite rank approximation scheme thus reducing the study of the spectral properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe

    Spectral properties of noisy classical and quantum propagators

    Full text link
    We study classical and quantum maps on the torus phase space, in the presence of noise. We focus on the spectral properties of the noisy evolution operator, and prove that for any amount of noise, the quantum spectrum converges to the classical one in the semiclassical limit. The small-noise behaviour of the classical spectrum highly depends on the dynamics generated by the map. For a chaotic dynamics, the outer spectrum consists in isolated eigenvalues (``resonances'') inside the unit circle, leading to an exponential damping of correlations. On the opposite, in the case of a regular map, part of the spectrum accumulates along a one-dimensional ``string'' connecting the origin with unity, yielding a diffusive behaviour. We finally study the non-commutativity between the semiclassical and small-noise limits, and illustrate this phenomenon by computing (analytically and numerically) the classical and quantum spectra for some maps.Comment: 35 pages, 6 .eps figures, to be published in Nonlinearity. I added some references and comment

    Statistical and dynamical properties of covariant lyapunov vectors in a coupled atmosphere-ocean model—multiscale effects, geometric degeneracy, and error dynamics

    Get PDF
    We study a simplified coupled atmosphere-ocean model using the formalism of covariant Lyapunov vectors (CLVs), which link physically-based directions of perturbations to growth/decay rates. The model is obtained via a severe truncation of quasi-geostrophic equations for the two fluids, and includes a simple yet physically meaningful representation of their dynamical/thermodynamical coupling. The model has 36 degrees of freedom, and the parameters are chosen so that a chaotic behaviour is observed. There are two positive Lyapunov exponents (LEs), sixteen negative LEs, and eighteen near-zero LEs. The presence of many near-zero LEs results from the vast time-scale separation between the characteristic time scales of the two fluids, and leads to nontrivial error growth properties in the tangent space spanned by the corresponding CLVs, which are geometrically very degenerate. Such CLVs correspond to two different classes of ocean/atmosphere coupled modes. The tangent space spanned by the CLVs corresponding to the positive and negative LEs has, instead, a non-pathological behaviour, and one can construct robust large deviations laws for the finite time LEs, thus providing a universal model for assessing predictability on long to ultra-long scales along such directions. Interestingly, the tangent space of the unstable manifold has substantial projection on both atmospheric and oceanic components. The results show the difficulties in using hyperbolicity as a conceptual framework for multiscale chaotic dynamical systems, whereas the framework of partial hyperbolicity seems better suited, possibly indicating an alternative definition for the chaotic hypothesis. They also suggest the need for an accurate analysis of error dynamics on different time scales and domains and for a careful set-up of assimilation schemes when looking at coupled atmosphere-ocean models
    • …
    corecore