2,131 research outputs found

    A Criterion for the Critical Number of Fermions and Chiral Symmetry Breaking in Anisotropic QED(2+1)

    Full text link
    By analyzing the strength of a photon-fermion coupling using basic scattering processes we calculate the effect of a velocity anisotropy on the critical number of fermions at which mass is dynamically generated in planar QED. This gives a quantitative criterion which can be used to locate a quantum critical point at which fermions are gapped and confined out of the physical spectrum in a phase diagram of various condensed matter systems. We also discuss the mechanism of relativity restoration within the symmetric, quantum-critical phase of the theory.Comment: To appear in Physical Review

    Exploring the Use of Computer Simulations in Unraveling Research and Development Governance Problems

    Get PDF
    Understanding Research and Development (R&D) enterprise relationships and processes at a governance level is not a simple task, but valuable decision-making insight and evaluation capabilities can be gained from their exploration through computer simulations. This paper discusses current Modeling and Simulation (M&S) methods, addressing their applicability to R&D enterprise governance. Specifically, the authors analyze advantages and disadvantages of the four methodologies used most often by M&S practitioners: System Dynamics (SO), Discrete Event Simulation (DES), Agent Based Modeling (ABM), and formal Analytic Methods (AM) for modeling systems at the governance level. Moreover, the paper describes nesting models using a multi-method approach. Guidance is provided to those seeking to employ modeling techniques in an R&D enterprise for the purposes of understanding enterprise governance. Further, an example is modeled and explored for potential insight. The paper concludes with recommendations regarding opportunities for concentration of future work in modeling and simulating R&D governance relationships and processes

    Chemical Graphs. XXXII. Constitutional and Steric Isomers of Substituted Cycloalkanes

    Get PDF
    Polya\u27s theorem was applied to cycloalkanes in order to obtain the numbers of stereoisomers, enantiomers, and constitutional isomers of substituted derivatives. Whereas the stereoisomers result from the actual constitutional graphs of the flexible cycloalkanes, special graphs must be devised for ignoring stereoisomerism or enantiomerism

    The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice Z^3

    Full text link
    We consider an Euclidean supersymmetric field theory in Z3Z^3 given by a supersymmetric Φ4\Phi^4 perturbation of an underlying massless Gaussian measure on scalar bosonic and Grassmann fields with covariance the Green's function of a (stable) L\'evy random walk in Z3Z^3. The Green's function depends on the L\'evy-Khintchine parameter α=3+ϵ2\alpha={3+\epsilon\over 2} with 0<α<20<\alpha<2. For α=32\alpha ={3\over 2} the Φ4\Phi^{4} interaction is marginal. We prove for α32=ϵ2>0\alpha-{3\over 2}={\epsilon\over 2}>0 sufficiently small and initial parameters held in an appropriate domain the existence of a global renormalization group trajectory uniformly bounded on all renormalization group scales and therefore on lattices which become arbitrarily fine. At the same time we establish the existence of the critical (stable) manifold. The interactions are uniformly bounded away from zero on all scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all scales. The interest of this theory comes from the easily established fact that the Green's function of a (weakly) self-avoiding L\'evy walk in Z3Z^3 is a second moment (two point correlation function) of the supersymmetric measure governing this model. The control of the renormalization group trajectory is a preparation for the study of the asymptotics of this Green's function. The rigorous control of the critical renormalization group trajectory is a preparation for the study of the critical exponents of the (weakly) self-avoiding L\'evy walk in Z3Z^3.Comment: 82 pages, Tex with macros supplied. Revision includes 1. redefinition of norms involving fermions to ensure uniqueness. 2. change in the definition of lattice blocks and lattice polymer activities. 3. Some proofs have been reworked. 4. New lemmas 5.4A, 5.14A, and new Theorem 6.6. 5.Typos corrected.This is the version to appear in Journal of Statistical Physic

    An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths

    Full text link
    A chordless cycle (induced cycle) CC of a graph is a cycle without any chord, meaning that there is no edge outside the cycle connecting two vertices of the cycle. A chordless path is defined similarly. In this paper, we consider the problems of enumerating chordless cycles/paths of a given graph G=(V,E),G=(V,E), and propose algorithms taking O(E)O(|E|) time for each chordless cycle/path. In the existing studies, the problems had not been deeply studied in the theoretical computer science area, and no output polynomial time algorithm has been proposed. Our experiments showed that the computation time of our algorithms is constant per chordless cycle/path for non-dense random graphs and real-world graphs. They also show that the number of chordless cycles is much smaller than the number of cycles. We applied the algorithm to prediction of NMR (Nuclear Magnetic Resonance) spectra, and increased the accuracy of the prediction

    On Renormalization Group Flows and Polymer Algebras

    Get PDF
    In this talk methods for a rigorous control of the renormalization group (RG) flow of field theories are discussed. The RG equations involve the flow of an infinite number of local partition functions. By the method of exact beta-function the RG equations are reduced to flow equations of a finite number of coupling constants. Generating functions of Greens functions are expressed by polymer activities. Polymer activities are useful for solving the large volume and large field problem in field theory. The RG flow of the polymer activities is studied by the introduction of polymer algebras. The definition of products and recursive functions replaces cluster expansion techniques. Norms of these products and recursive functions are basic tools and simplify a RG analysis for field theories. The methods will be discussed at examples of the Φ4\Phi^4-model, the O(N)O(N) σ\sigma-model and hierarchical scalar field theory (infrared fixed points).Comment: 32 pages, LaTeX, MS-TPI-94-12, Talk presented at the conference ``Constructive Results in Field Theory, Statistical Mechanics and Condensed Matter Physics'', 25-27 July 1994, Palaiseau, Franc
    corecore