2 research outputs found

    Identification of a regulatory pathway inhibiting adipogenesis via RSPO2

    Full text link
    Healthy adipose tissue remodeling depends on the balance between de novo adipogenesis from adipogenic progenitor cells and the hypertrophy of adipocytes. De novo adipogenesis has been shown to promote healthy adipose tissue expansion, which confers protection from obesity-associated insulin resistance. Here, we define the role and trajectory of different adipogenic precursor subpopulations and further delineate the mechanism and cellular trajectory of adipogenesis, using single-cell RNA-sequencing datasets of murine adipogenic precursors. We identify Rspo2 as a functional regulator of adipogenesis, which is secreted by a subset of CD142+^{+} cells to inhibit maturation of early progenitors through the receptor Lgr4. Increased circulating RSPO2 in mice leads to adipose tissue hypertrophy and insulin resistance and increased RSPO2 levels in male obese individuals correlate with impaired glucose homeostasis. Taken together, these findings identify a complex cellular crosstalk that inhibits adipogenesis and impairs adipose tissue homeostasis

    Outdoor Temperature Influences Cold Induced Thermogenesis in Humans

    Get PDF
    Objective: Energy expenditure (EE) increases in response to cold exposure, which is called cold induced thermogenesis (CIT). Brown adipose tissue (BAT) has been shown to contribute significantly to CIT in human adults. BAT activity and CIT are acutely influenced by ambient temperature. In the present study, we investigated the long-term effect of seasonal temperature variation on human CIT.Materials and Methods: We measured CIT in 56 healthy volunteers by indirect calorimetry. CIT was determined as difference between EE during warm conditions (EEwarm) and after a defined cold stimulus (EEcold). We recorded skin temperatures at eleven anatomically predefined locations, including the supraclavicular region, which is adjacent to the main human BAT depot. We analyzed the relation of EE, CIT and skin temperatures to the daily minimum, maximum and mean outdoor temperature averaged over 7 or 30 days, respectively, prior to the corresponding study visit by linear regression.Results: We observed a significant inverse correlation between outdoor temperatures and EEcold and CIT, respectively, while EEwarm was not influenced. The daily maximum temperature averaged over 7 days correlated best with EEcold (R2 = 0.123, p = 0.008) and CIT (R2 = 0.200, p = 0.0005). The mean skin temperatures before and after cold exposure were not related to outdoor temperatures. However, the difference between supraclavicular and parasternal skin temperature after cold exposure was inversely related to the average maximum temperature during the preceding 7 days (R2 = 0.07575, p = 0.0221).Conclusion: CIT is significantly related to outdoor temperatures indicating dynamic adaption of thermogenesis and BAT activity to environmental stimuli in adult humans.Clinical Trial Registration:www.ClinicalTrials.gov, Identifier NCT02682706
    corecore