1,077 research outputs found

    Inducing vortices in a Bose-Einstein condensate using holographically produced light beams

    Get PDF
    In this paper we demonstrate a technique that can create out-of-equilibrium vortex configurations with almost arbitrary charge and geometry in a Bose-Einstein condensate. We coherently transfer orbital angular momentum from a holographically generated light beam to a Rubidium 87 condensate using a two-photon stimulated Raman process. Using matter wave interferometry, we verify the phase pattern imprinted onto the atomic wave function for a single vortex and a vortex-antivortex pair. In addition to their phase winding, the vortices created with this technique have an associated hyperfine spin texture.Comment: 4 pages, 5 figure

    Phase separation and pair condensation in a spin-imbalanced 2D Fermi gas

    Full text link
    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced condensate surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions

    Quantum gas microscopy for single atom and spin detection

    Full text link
    A particular strength of ultracold quantum gases are the versatile detection methods available. Since they are based on atom-light interactions, the whole quantum optics toolbox can be used to tailor the detection process to the specific scientific question to be explored in the experiment. Common methods include time-of-flight measurements to access the momentum distribution of the gas, the use of cavities to monitor global properties of the quantum gas with minimal disturbance and phase-contrast or high-intensity absorption imaging to obtain local real space information in high-density settings. Even the ultimate limit of detecting each and every atom locally has been realized in two-dimensions using so-called quantum gas microscopes. In fact, these microscopes not only revolutionized the detection, but also the control of lattice gases. Here we provide a short overview of this technique, highlighting new observables as well as key experiments that have been enabled by quantum gas microscopy.Comment: Community comments welcome

    A Novel Dielectric-Loaded Dual-Mode Cavity for Cellular Base Station Applications

    Get PDF
    A new class of dual mode dielectric resonator filter for mobile communication systems is presented. The proposed resonator exhibits high unloaded quality factor and reasonably wide spurious operating window. Based on this cavity, a 4-pole dual-mode Generalised Chebyshev filter is developed and fabricated in the stacked configuration. An unexpected spurious mode is appeared at 2.3 GHz due to improper coupling. A coupling technique for eliminating the unexpected spurious resonance is proposed. The obtained experimental and measured results with an asymmetric transmission zeros confirm the validity of the proposed resonator for releasing filters for cellular-radio base stations

    Mechanical and fracture properties of a self-compacting version of CARDIFRC Mix II

    Get PDF
    CARDIFRC is the trade name of two main groups of ultra-high performance fibre-reinforced concrete mixes – Mixes I and II – differing primarily in the maximum size of quartz sand used (0.6 mm in Mix I, and 2 mm in Mix II). In this paper, the conversion of CARDIFRC Mix II to a self-compacting and industrially competitive ultra-high performance fibre-reinforced concrete (UHPFRC) is described. A full mechanical and fracture characterisation (i.e. size-independent fracture energy and the corresponding bi-linear stress-crack opening relationship) of this UHPFRC is provided

    NONPARAMETRIC TEST FOR UBACT CLASS OF LIFE DISTRIBUTION BASED ON U-STATISTIC

    Get PDF
    Based on U-statistic, testing exponentially versus used better than aged in convex tail ordering (UBACT) class of life distribution is introduced for complete and cen-sored data. Convergence of the proposed statistic to the normal distribution is proved. Selected critical values are tabulated for sample sizes 5(5)80 for complete data, and (61)(10)(201) for censored data: The Pitman asymptotic relative e¢ ciency of the pro- posed tests to the other classes is studied. A numerical examples in medical science demonstrates practical application of the proposed test

    Evolution of Fermion Pairing from Three to Two Dimensions

    Full text link
    We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a strongly interacting Fermi gas of 6^6Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the 2D limit, the zero-temperature mean-field BEC-BCS theory.Comment: 5 pages, 4 figure

    <Advanced Energy Generation Division> Advanced Atomic Energy Research Section

    Get PDF
    3-1. Research Activities in 202
    corecore