1,806 research outputs found

    Quality of life before intensive care unit admission is a predictor of survival

    Get PDF
    Introduction: Predicting whether a critically ill patient will survive intensive care treatment remains difficult. The advantages of a validated strategy to identify those patients who will not benefit from intensive care unit (ICU) treatment are evident. Providing critical care treatment to patients who will ultimately die in the ICU is accompanied by an enormous emotional and physical burden for both patients and their relatives. The purpose of the present study was to examine whether health-related quality of life (HRQOL) before admission to the ICU can be used as a predictor of mortality. Methods: We conducted a prospective cohort study in a university-affiliated teaching hospital. Patients admitted to the ICU for longer than 48 hours were included. Close relatives completed the Short-form 36 (SF-36) within the first 48 hours o

    Livestock as a potential biological control agent for an invasive wetland plant

    Get PDF
    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species

    Antibody engineering & therapeutics, the annual meeting of the antibody society December 7-10, 2015, San Diego, CA, USA

    Get PDF
    The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6-10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4 d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on "Antibodies to watch" in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries

    Quantitative Approach to Fragmented QRS in Arrhythmogenic Cardiomyopathy: From Disease towards Asymptomatic Carriers of Pathogenic Variants

    Get PDF
    Fragmented QRS complexes (fQRS) are common in patients with arrhythmogenic cardiomyopathy (ACM). A new method of fQRS quantification may aid early disease detection in pathogenic variant carriers and assessment of prognosis in patients with early stage ACM. Patients with definite ACM (n = 221, 66%), carriers of a pathogenic ACM-associated variant without a definite ACM diagnosis (n = 57, 17%) and control subjects (n = 58, 17%) were included. Quantitative fQRS (Q-fQRS) was defined as the total amount of deflections in the QRS complex in all 12 electrocardiography (ECG) leads. Q-fQRS was scored by a single observer and reproducibility was determined by three independent observers. Q-fQRS count was feasible with acceptable intra- and inter-observer agreement. Q-fQRS count is significantly higher in patients with definite ACM (54 ± 15) and pathogenic variant carriers (55 ± 10) compared to controls (35 ± 5) (p < 0.001). In patients with ACM, Q-fQRS was not associated with sustained ventricular arrhythmia (p = 0.701) at baseline or during follow-up (p = 0.335). Both definite ACM patients and pathogenic variant carriers not fulfilling ACM diagnosis have a higher Q-fQRS than controls. This may indicate that increased Q-fQRS is an early sign of disease penetrance. In concealed and early stages of ACM the role of Q-fQRS for risk stratification is limite

    Decomposition cross-correlation for analysis of collagen matrix deformation by single smooth muscle cells

    Get PDF
    Microvascular remodeling is known to depend on cellular interactions with matrix tissue. However, it is difficult to study the role of specific cells or matrix elements in an in vivo setting. The aim of this study is to develop an automated technique that can be employed to obtain and analyze local collagen matrix remodeling by single smooth muscle cells. We combined a motorized microscopic setup and time-lapse video microscopy with a new cross-correlation based image analysis algorithm to enable automated recording of cell-induced matrix reorganization. This method rendered 60–90 single cell studies per experiment, for which collagen deformation over time could be automatically derived. Thus, the current setup offers a tool to systematically study different components active in matrix remodeling

    Power Supplies and Equipment for Military Field Research : lessons from the British Service Dhaulagiri Research Expedition 2016

    Get PDF
    Introduction: The British Service Dhaulagiri Research Expedition (BSDMRE) took place from 27th March to 31st May 2016. The expedition involved 129 personnel, with voluntary participation in 9 different study protocols. Studies were conducted in three research camps established at 3600m, 4600m and 5140m and involved taking and storing blood samples, cardiac echocardiography and investigations involving a balance plate. Research in this remote environment requires careful planning in order to provide a robust and resilient power plan. In this paper we aim to report the rationale for the choices we made in terms of power supply, the equipment used and potential military applicability. Methods: This is a descriptive account from the expedition members involved in planning and conducting the medical research. Results: Power calculations were used to determine estimates of requirement prior to the expedition. The primary sources used to generate power were internal combustion engine (via petrol fueled electric generators), and solar panels. Having been generated, power was stored using lithium-ion batteries. Special consideration was given to the storage of samples taken in the field, for which electric freezers and dry-shippers were used. All equipment used functioned well during the expedition, with the challenges of altitude, temperature, and transport all overcome due to extensive prior planning. Conclusions: Power was successfully generated, stored, and delivered during the BSDMRE, allowing extensive medical research to be undertaken. The challenges faced and overcome are directly applicable to delivering military medical care in austere environments, and lessons learned can help with the planning and delivery of future operations, training exercises, or expeditions

    Vascular smooth muscle cells remodel collagen matrices by long-distance action and anisotropic interaction

    Get PDF
    While matrix remodeling plays a key role in vascular physiology and pathology, the underlying mechanisms have remained incompletely understood. We studied the remodeling of collagen matrices by individual vascular smooth muscle cells (SMCs), clusters and monolayers. In addition, we focused on the contribution of transglutaminase 2 (TG2), which plays an important role in the remodeling of small arteries. Single SMCs displaced fibers in collagen matrices at distances up to at least 300 μm in the course of 8–12 h. This process involved both ‘hauling up’ of matrix by the cells and local matrix compaction at a distance from the cells, up to 200 μm. This exceeded the distance over which cellular protrusions were active, implicating the involvement of secreted enzymes such as TG2. SMC isolated from TG2 KO mice still showed compaction, with changed dynamics and relaxation. The TG active site inhibitor L682777 blocked local compaction by wild type cells, strongly reducing the displacement of matrix towards the cells. At increasing cell density, cells cooperated to establish compaction. In a ring-shaped collagen matrix, this resulted in preferential displacement in the radial direction, perpendicular to the cellular long axis. This process was unaffected by inhibition of TG2 cross-linking. These results show that SMCs are capable of matrix remodeling by prolonged, gradual compaction along their short axis. This process could add to the 3D organization and remodeling of blood vessels based on the orientation and contraction of SMCs

    The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep

    Get PDF
    During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators

    Species trait shifts in vegetation and soil seed bank during fen degradation

    Get PDF
    Fens in Central Europe are characterised by waterlogged organic substrate and low productivity. Human-induced changes due to drainage and mowing lead to changes in plant species composition from natural fen communities to fen meadows and later to over-drained, degraded meadows. Moderate drainage leads to increased vegetation productivity, and severe drainage results in frequent soil disturbances and less plant growth. In the present article, we analyse changes in plant trait combinations in the vegetation and the soil seed bank as well as changes in the seed bank types along gradient of drainage intensity. We hypothesize that an increase in productivity enhances traits related to persistence and that frequent disturbance selects for regeneration traits. We use multivariate statistics to analyse data from three disturbance levels: undisturbed fen, slightly drained fen meadow and severely drained degraded meadow. We found that the abundance of plants regenerating from seeds and accumulating persistent seed banks was increasing with degradation level, while plants reproducing vegetatively were gradually eliminated along the same trajectory. Plants with strong resprouting abilities increased during degradation. We also found that shifts in trait combinations were similar in the aboveground vegetation and in soil seed banks. We found that the density of short-term persistent seeds in the soil is highest in fen meadows and the density of long-term persistent seeds is highest in degraded meadows. The increase in abundance of species with strong regeneration traits at the cost of species with persistence-related traits has negative consequences for the restoration prospects of severely degraded sites
    corecore