11,518 research outputs found

    The BIOEXPLOIT Project

    Get PDF
    The EU Framework 6 Integrated Project BIOEXPLOIT concerns the exploitation of natural plant biodiversity for the pesticide-free production of food. It focuses on the pathogens Phytophthora infestans, Septoria tritici, Blumeria graminis, Puccinia spp. and Fusarium spp. and on the crops wheat, barley, tomato and potato. The project commenced in October 2005, comprises 45 laboratories in 12 countries, and is carried out by partners from research institutes, universities, private companies and small-medium enterprises. The project has four strategic objectives covered in eight sub-projects. These objectives relate to (i) understanding the molecular components involved in durable disease resistance, (ii) exploring and exploiting the natural biodiversity in disease resistance, (iii) accelerating the introduction of marker-assisted breeding and genetic engineering in the EU plant breeding industry, and (iv) coordinating and integrating resistance breeding research, providing training in new technologies, disseminating the results, and transferring knowledge and technologies to the industry

    A path following algorithm for mobile robots

    Get PDF
    This paper considers path following control for a robotic platform. The vehicle used for the experiments is a specially designed robotic platform for performing autonomous weed control. The platform is four-wheel steered and four-wheel driven. A diesel engine powers the wheels via a hydraulic transmission. The robot uses a Real Time Kinematic Differential Global Positioning System to determine both position and orientation relative to the path. The deviation of the robot to the desired path is supplied to two high level controllers minimizing the orthogonal distance and orientation to the path. Wheel angle setpoints are determined from inversion of the kinematic model. At low level each wheel angle is controlled by a proportional controller combined with a Smith predictor. Results show the controller performance following different paths shapes including a step, a ramp, and a typical headland path. A refined tuning method calculates controller settings that let the robot drive as much as possible along the same path to its setpoint, but also limit the gains at higher speeds to prevent the closed loop system to become unstable due to the time delay in the system. Mean, minimum and maximum orthogonal distance errors while following a straight path on a paving at a speed of 0.5 m/s are 0.0, -2.4 and 3.0 cm respectively and the standard deviation is 1.2 cm. The control method for four wheel steered vehicles presented in this paper has the unique feature that it enables control of a user definable position relative to the robot frame and can deal with limitations on the wheel angles. The method is very well practical applicable for a manufacturer: all parameters needed are known by the manufacturer or can be determined easily, user settings have an easy interpretation and the only complex part can be supplied as a generic software modul

    The box diagram in Yukawa theory

    Full text link
    We present a light-front calculation of the box diagram in Yukawa theory. The covariant box diagram is finite for the case of spin-1/2 constituents exchanging spin-0 particles. In light-front dynamics, however, individual time-ordered diagrams are divergent. We analyze the corresponding light-front singularities and show the equivalence between the light-front and covariant results by taming the singularities.Comment: 21 pages, 17 figures. submittes to Phys. Rev.

    Singular Vertices and the Triangulation Space of the D-sphere

    Get PDF
    By a sequence of numerical experiments we demonstrate that generic triangulations of the D−D-sphere for D>3D>3 contain one {\it singular} (D−3)−(D-3)-simplex. The mean number of elementary D−D-simplices sharing this simplex increases with the volume of the triangulation according to a simple power law. The lower dimension subsimplices associated with this (D−3)−(D-3)-simplex also show a singular behaviour. Possible consequences for the DT model of four-dimensional quantum gravity are discussed.Comment: 15 pages, 9 figure

    Thomson scattering in a low-pressure neon mercury positive column

    Get PDF
    The electron density and the electron temperature in a low-pressure neon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 10 mbar of neon, a mercury pressure inbetween 0.14 and 0.85 Pa, and an electric current ranging from 100 to 400 mA. The systematic error in the electron density is 15%–45%, the statistical error is 25%–35%. The total error in the electron temperature is 15%–35%. ©2001 American Institute of Physics

    Nambu monopoles in lattice Electroweak theory

    Full text link
    We considered the lattice electroweak theory at realistic values of α\alpha and θW\theta_W and for large values of the Higgs mass. We investigated numerically the properties of topological objects that are identified with quantum Nambu monopoles. We have found that the action density near the Nambu monopole worldlines exceeds the density averaged over the lattice in the physical region of the phase diagram. Moreover, their percolation probability is found to be an order parameter for the transition between the symmetric and the broken phases. Therefore, these monopoles indeed appear as real physical objects. However, we have found that their density on the lattice increases with increasing ultraviolet cutoff. Thus we conclude, that the conventional lattice electroweak theory is not able to predict the density of Nambu monopoles. This means that the description of Nambu monopole physics based on the lattice Weinberg - Salam model with finite ultraviolet cutoff is incomplete. We expect that the correct description may be obtained only within the lattice theory that involves the description of TeV - scale physics.Comment: LATE

    The Vector Meson Form Factor Analysis in Light-Front Dynamics

    Get PDF
    We study the form factors of vector mesons using a covariant fermion field theory model in (3+1)(3+1) dimensions. Performing a light-front calculation in the q+=0q^+ =0 frame in parallel with a manifestly covariant calculation, we note the existence of a nonvanishing zero-mode contribution to the light-front current J+J^+ and find a way of avoiding the zero-mode in the form factor calculations. Upon choosing the light-front gauge (\ep^+_{h=\pm}=0) with circular polarization and with spin projection h=↑↓=±h=\uparrow\downarrow=\pm, only the helicity zero to zero matrix element of the plus current receives zero-mode contributions. Therefore, one can obtain the exact light-front solution of the form factors using only the valence contribution if only the helicity components, (h′h)=(++),(+−)(h'h)=(++),(+-), and (+0)(+0), are used. We also compare our results obtained from the light-front gauge in the light-front helicity basis (i.e. h=±,0h=\pm,0) with those obtained from the non-LF gauge in the instant form linear polarization basis (i.e. h=x,y,zh=x,y,z) where the zero-mode contributions to the form factors are unavoidable.Comment: 33 pages; typo in Eq.(15) is corrected; comment on Ref.[9] is corrected; version to appear in Phys. Rev.
    • …
    corecore