74 research outputs found
Nature of the bonding in metal-silane σ-complexes
The nature of metal silane σ-bond interaction has been investigated in several key systems by a range of experimental and computational techniques. The structure of [Cp′Mn(CO)2(η2-HSiHPh2)] 1 has been determined by single crystal neutron diffraction, and the geometry at the Si atom is shown to approximate a trigonal bipyramid; salient bond distances and angles are Mn−H(1) 1.575(14), Si−H(1) 1.806(14), Si−H(2) 1.501(13) Å, and H(1)−Si−H(2) 148.5(8)°. This complex is similar to [Cp′Mn(CO)2(η2-HSiFPh2)] 2, whose structure and bonding characteristics have recently been determined by charge density studies based on high-resolution X-ray and neutron diffraction data. The geometry at the Si atom in these σ-bond complexes is compared with that in other systems containing hypercoordinate silicon. The Mn−H distances for 1 and 2 in solution have been estimated using NMR T1 relaxation measurements, giving a value of 1.56(3) Å in each case, in excellent agreement with the distances deduced from neutron diffraction. Density functional theory calculations have been employed to explore the bonding in the Mn−H−Si unit in 1 and 2 and in the related system [Cp′Mn(CO)2(η2-HSiCl3)] 3. These studies support the idea that the oxidative addition of a silane ligand to a transition metal center may be described as an asymmetric process in which the Mn−H bond is formed at an early stage, while both the establishment of the Mn−Si bond and also the activation of the η2-coordinated Si−H moiety are controlled by the extent of Mn → σ*(X−Si−H) back-donation, which increases with increasing electron-withdrawing character of the X substituent trans to the metal-coordinated Si−H bond. This delocalized molecular orbital (MO) approach is complemented and supported by combined experimental and theoretical charge density studies: the source function S(r,Ω), which provides a measure of the relative importance of each atom’s contribution to the density at a specific reference point r, clearly shows that all three atoms of the Mn(η2-SiH) moiety contribute to a very similar extent to the density at the Mn−Si bond critical point, in pleasing agreement with the MO model. Hence, we advance a consistent and unifying concept which accounts for the degree of Si−H activation in these silane σ-bond complexes
Rh-POP Pincer Xantphos Complexes for C-S and C-H Activation. Implications for Carbothiolation Catalysis
The neutral Rh(I)–Xantphos
complex [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Cl]<sub><i>n</i></sub>, <b>4</b>, and cationic Rh(III) [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(H)<sub>2</sub>][BAr<sup>F</sup><sub>4</sub>], <b>2a</b>, and [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)(H)<sub>2</sub>][BAr<sup>F</sup><sub>4</sub>], <b>2b</b>, are described [Ar<sup>F</sup> = 3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; Xantphos
= 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub> = 9,9-dimethylxanthene-4,5-bis(bis(3,5-bis(trifluoromethyl)phenyl)phosphine].
A solid-state structure of <b>2b</b> isolated from C<sub>6</sub>H<sub>5</sub>Cl solution shows a κ<sup>1</sup>-chlorobenzene
adduct, [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)(H)<sub>2</sub>(κ<sup>1</sup>-ClC<sub>6</sub>H<sub>5</sub>)][BAr<sup>F</sup><sub>4</sub>], <b>3</b>. Addition of H<sub>2</sub> to <b>4</b> affords,
crystallographically characterized, [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(H)<sub>2</sub>Cl], <b>5</b>. Addition of diphenyl
acetylene to <b>2a</b> results in the formation of the C–H
activated metallacyclopentadiene [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(ClCH<sub>2</sub>Cl)(σ,σ-(C<sub>6</sub>H<sub>4</sub>)C(H)CPh)][BAr<sup>F</sup><sub>4</sub>], <b>7</b>, a rare example of a crystallographically characterized Rh–dichloromethane
complex, alongside the Rh(I) complex <i>mer</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(η<sup>2</sup>-PhCCPh)][BAr<sup>F</sup><sub>4</sub>], <b>6</b>. Halide abstraction from [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Cl]<sub><i>n</i></sub> in the presence of diphenylacetylene affords <b>6</b> as the
only product, which in the solid state shows that the alkyne binds
perpendicular to the κ<sup>3</sup>-POP Xantphos ligand plane.
This complex acts as a latent source of the [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)]<sup>+</sup> fragment and facilitates
<i>ortho</i>-directed C–S activation in a number
of 2-arylsulfides to give <i>mer</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(σ,κ<sup>1</sup>-Ar)(SMe)][BAr<sup>F</sup><sub>4</sub>] (Ar = C<sub>6</sub>H<sub>4</sub>COMe, <b>8</b>; C<sub>6</sub>H<sub>4</sub>(CO)OMe, <b>9</b>; C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>, <b>10</b>; C<sub>6</sub>H<sub>4</sub>CNCH<sub>2</sub>CH<sub>2</sub>O, <b>11</b>; C<sub>6</sub>H<sub>4</sub>C<sub>5</sub>H<sub>4</sub>N, <b>12</b>).
Similar C–S bond cleavage is observed with allyl sulfide,
to give <i>fac</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)(SPh)][BAr<sup>F</sup><sub>4</sub>], <b>13</b>. These products of C–S
activation have been crystallographically characterized. For <b>8</b> in situ monitoring of the reaction by NMR spectroscopy reveals
the initial formation of <i>fac</i>-κ<sup>3</sup>-<b>8</b>, which then proceeds to isomerize to the <i>mer</i>-isomer. With the <i>para</i>-ketone aryl sulfide, 4-SMeC <sub>6</sub>H<sub>4</sub>COMe, C–H activation <i>ortho</i> to the ketone occurs to give <i>mer</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(σ,κ<sup>1</sup>-4-(COMe)C<sub>6</sub>H<sub>3</sub>SMe)(H)][BAr<sup>F</sup><sub>4</sub>], <b>14</b>. The temporal evolution of carbothiolation catalysis using <i>mer</i>-κ<sup>3</sup>-<b>8</b>, and phenyl acetylene
and 2-(methylthio)acetophenone substrates shows initial fast catalysis
and then a considerably slower evolution of the product. We suggest
that the initially formed <i>fac</i>-isomer of the C–S
activation product is considerably more active than the <i>mer</i>-isomer (i.e., <i>mer</i>-<b>8</b>), the latter of
which is formed rapidly by isomerization, and this accounts for the
observed difference in rates. A likely mechanism is proposed based
upon these data
Structures and Aggregation of the Methylamine−Borane Molecules, MenH3−nN·BH3 (n = 1−3), Studied by X-ray Diffraction, Gas-Phase Electron Diffraction, and Quantum Chemical Calculations
The structures of the molecules methylamine-borane, MeH(2)N.BH(3), and dimethylamine-borane, Me(2)HN.BH(3), have been investigated by gas-phase electron diffraction (GED) and quantum chemical calculations. The crystal structures have also been determined for methylamine-, dimethylamine-, and trimethylamine-borane, Me(n)H(3-n)N.BH(3) (n = 1-3); these are noteworthy for what they reveal about the intermolecular interactions and, particularly, the N-H...H-B dihydrogen bonding in the cases where n = 1 or 2. Hence, structures are now known for all the members of the ammonia- and amine-borane series Me(n)H(3-n)N.BH(3) (n = 0-3) in both the gas and solid phases. The structural variations and energetics of formation of the gaseous adducts are discussed in relation to the basicity of the Me(n)H(3-n)N fragment. The relative importance of secondary interactions in the solid adducts with n = 0-3 has been assessed by the semi-classical density sums (SCDS-PIXEL) approach
- …