22 research outputs found

    Aristolochic Acid I Induced Autophagy Extenuates Cell Apoptosis via ERK 1/2 Pathway in Renal Tubular Epithelial Cells

    Get PDF
    Autophagy is a lysosomal degradation pathway that is essential for cell survival and tissue homeostasis. However, limited information is available about autophagy in aristolochic acid (AA) nephropathy. In this study, we investigated the role of autophagy and related signaling pathway during progression of AAI-induced injury to renal tubular epithelial cells (NRK52E cells). The results showed that autophagy in NRK52E cells was detected as early as 3–6 hrs after low dose of AAI (10 µM) exposure as indicated by an up-regulated expression of LC3-II and Beclin 1 proteins. The appearance of AAI-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in NRK52E cells provided further evidence for autophagy. However, cell apoptosis was not detected until 12 hrs after AAI treatment. Blockade of autophagy with Wortmannin or 3-Methyladenine (two inhibitors of phosphoinositede 3-kinases) or small-interfering RNA knockdown of Beclin 1 or Atg7 sensitized the tubular cells to apoptosis. Treatment of NRK52E cells with AAI caused a time-dependent increase in extracellular signal-regulated kinase 1 and 2 (ERK1/2) activity, but not c-Jun N-terminal kinase (JNK) and p38. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased AAI-induced autophagy that was accompanied by an increased apoptosis. Taken together, our study demonstrated for the first time that autophagy occurred earlier than apoptosis during AAI-induced tubular epithelial cell injury. Autophagy induced by AAI via ERK1/2 pathway might attenuate apoptosis, which may provide a protective mechanism for cell survival under AAI-induced pathological condition

    Absorption and Metabolism of cis-9,trans-11-CLA and of Its Oxidation Product 9,11-Furan Fatty Acid by Caco-2 Cells

    Get PDF
    Furan fatty acids (furan-FA) can be formed by auto-oxidation of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing foodstuff is consumed. Due to the presence of a furan ring structure, furan-FA may have toxic properties, however, these substances are toxicologically not well characterized so far. Here we show that 9,11-furan-FA, the oxidation product of the major CLA isomer cis-9,trans-11-CLA (c9,t11-CLA), is not toxic to human intestinal Caco-2 cells up to a level of 100 μM. Oil-Red-O staining indicated that 9,11-furan-FA as well as c9,t11-CLA and linoleic acid are taken up by the cells and stored in the form of triglycerides in lipid droplets. Chemical analysis of total cellular lipids revealed that 9,11-furan-FA is partially elongated probably by the enzymatic activity of cellular fatty acid elongases whereas c9,t11-CLA is partially converted to other isomers such as c9,c11-CLA or t9,t11-CLA. In the case of 9,11-furan-FA, there is no indication for any modification or activation of the furan ring system. From these results, we conclude that 9,11-furan-FA has no properties of toxicological relevance at least for Caco-2 cells which serve as a model for enterocytes of the human small intestine

    Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Get PDF
    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment

    Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters

    No full text
    AIMS: To investigate the association between torsemide renal clearance and genetic variation in the basolaterally expressed renal organic anion transporters OAT1 and OAT3 and in the luminally situated OAT4. METHODS: We analysed 22 polymorphisms in the OAT coding genes SLC22A6, SLC22A8 and SLC22A11 and their haplotypes and measured torsemide renal clearance in 95 healthy men. In addition, the effect of torsemide on the OAT-mediated transport was studied in vitro. RESULTS: In stably transfected HEK293 cells torsemide (100 microm) inhibited the uptake by human OAT1, OAT3 and OAT4 by 63.1, 58.1 and 68.0%, respectively. Torsemide renal clearance ranged from 6.5 to 43.1 ml min(-1) with a log-normal distribution and a geometric mean of 15.6 ml min(-1) (15.0-16.1 +/- SEM). No clear outlier group was observed. AA carriers of the polymorphism rs11231809 in SLC22A11 had a torsemide renal clearance of 13.3 ml min(-1) (12.7-13.9) compared with 15.1 ml min(-1) (14.5-15.8) in AT and 18.0 ml min(-1) (16.7-19.5) in TT carriers (P = 0.002). The two most frequent haplotypes at SLC22A11 showed an association with torsemide renal clearance. Homozygous carriage of these two haplotypes resulted in renal clearances of 21.2 ml min(-1) (19.0-23.7) and 11.8 ml min(-1) (10.5-13.5), respectively. No association between reanl clearance and genetic variation in SLC22A6 or SLC22A8 was observed. CONCLUSIONS: Genetic variation in the gene encoding the luminally expressed OAT4 rather than in the basolaterally expressed OATs may affect the renal clearance of torsemide
    corecore