1,097 research outputs found
Nonexistence of conformally flat slices of the Kerr spacetime
Initial data for black hole collisions are commonly generated using the
Bowen-York approach based on conformally flat 3-geometries. The standard
(constant Boyer-Lindquist time) spatial slices of the Kerr spacetime are not
conformally flat, so that use of the Bowen-York approach is limited in dealing
with rotating holes. We investigate here whether there exist foliations of the
Kerr spacetime that are conformally flat. We limit our considerations to
foliations that are axisymmetric and that smoothly reduce in the Schwarzschild
limit to slices of constant Schwarzschild time. With these restrictions, we
show that no conformally flat slices can exist.Comment: 5 LaTeX pages; no figures; to be submitted to Phys. Rev.
Des aspects géographiques des sociétés de préparation militaire en France, 1870-1914
L'histoire des sociétés de préparation militaire France, qui sont une centaine au début des années 1870 et atteignent plusieurs milliers en 1914, est bien connue. Pourtant, le rôle de la géographie dans la formation et le fonctionnement de ces sociétés a été négligé. Cette étude examine ce rôle dans sept départements distincts (Ariège, Cantal, Finistère, Loir-et-Cher, Meurthe-et-Moselle, Pas-de-Calais et Vienne). Elle esquisse l'histoire de leur société de préparation militaire respective avant de s’intéresser à l'influence de la géographie sur leur répartition spatiale. L’article examine ensuite le discours géographique de ces sociétés : leur promotion des connaissances géographiques locales et de l’enseignement de la fierté dans leur patrie, cette dernière s’appuyant notamment sur la compréhension de la topographie, de la cartographie, du terrain et du paysage de la France.The history of France’s military preparation societies, which were about a hundred in the early 1870s and reached many thousands in 1914, is well known. However, the role of geography in the formation and functioning of these societies has been neglected. This study examines the role in seven separate departments (Ariège, Cantal, Finistère, Loir-et-Cher, Meurthe-et-Moselle, Pas-de-Calais and Vienne). It outlines the history of their respective societies of military preparation before focusing on the influence of geography on their spatial distribution. The article then examines the geographic discours of these companies: their promoting local geographical knowledge and teaching pride in their homeland, the latter relying in particular on understanding the topography, cartography, terrain and landscape of France
Semiclassical Quantization of Effective String Theory and Regge Trajectories
We begin with an effective string theory for long distance QCD, and evaluate
the semiclassical expansion of this theory about a classical rotating string
solution, taking into account the the dynamics of the boundary of the string.
We show that, after renormalization, the zero point energy of the string
fluctuations remains finite when the masses of the quarks on the ends of the
string approach zero. The theory is then conformally invariant in any spacetime
dimension D. For D=26 the energy spectrum of the rotating string formally
coincides with that of the open string in classical Bosonic string theory.
However, its physical origin is different. It is a semiclassical spectrum of an
effective string theory valid only for large values of the angular momentum.
For D=4, the first semiclassical correction adds the constant 1/12 to the
classical Regge formula.Comment: 65 pages, revtex, 3 figures, added 2 reference
The Lazarus project: A pragmatic approach to binary black hole evolutions
We present a detailed description of techniques developed to combine 3D
numerical simulations and, subsequently, a single black hole close-limit
approximation. This method has made it possible to compute the first complete
waveforms covering the post-orbital dynamics of a binary black hole system with
the numerical simulation covering the essential non-linear interaction before
the close limit becomes applicable for the late time dynamics. To determine
when close-limit perturbation theory is applicable we apply a combination of
invariant a priori estimates and a posteriori consistency checks of the
robustness of our results against exchange of linear and non-linear treatments
near the interface. Once the numerically modeled binary system reaches a regime
that can be treated as perturbations of the Kerr spacetime, we must
approximately relate the numerical coordinates to the perturbative background
coordinates. We also perform a rotation of a numerically defined tetrad to
asymptotically reproduce the tetrad required in the perturbative treatment. We
can then produce numerical Cauchy data for the close-limit evolution in the
form of the Weyl scalar and its time derivative
with both objects being first order coordinate and tetrad invariant. The
Teukolsky equation in Boyer-Lindquist coordinates is adopted to further
continue the evolution. To illustrate the application of these techniques we
evolve a single Kerr hole and compute the spurious radiation as a measure of
the error of the whole procedure. We also briefly discuss the extension of the
project to make use of improved full numerical evolutions and outline the
approach to a full understanding of astrophysical black hole binary systems
which we can now pursue.Comment: New typos found in the version appeared in PRD. (Mostly found and
collected by Bernard Kelly
Initial data for a head on collision of two Kerr-like black holes with close limit
We prove the existence of a family of initial data for the Einstein vacuum
equation which can be interpreted as the data for two Kerr-like black holes in
arbitrary location and with spin in arbitrary direction. This family of initial
data has the following properties: (i) When the mass parameter of one of them
is zero or when the distance between them goes to infinity, it reduces exactly
to the Kerr initial data. (ii) When the distance between them is zero, we
obtain exactly a Kerr initial data with mass and angular momentum equal to the
sum of the mass and angular momentum parameters of each of them. The initial
data depends smoothly on the distance, the mass and the angular momentum
parameters.Comment: 15 pages, no figures, Latex2
Scaling functions for O(4) in three dimensions
Monte Carlo simulation using a cluster algorithm is used to compute the
scaling part of the free energy for a three dimensional O(4) spin model. The
results are relevant for analysis of lattice studies of high temperature QCD.Comment: 12 pages, 6 figures, uses epsf.st
Reconstruction of Black Hole Metric Perturbations from Weyl Curvature
Perturbation theory of rotating black holes is usually described in terms of
Weyl scalars and , which each satisfy Teukolsky's complex
master wave equation and respectively represent outgoing and ingoing radiation.
On the other hand metric perturbations of a Kerr hole can be described in terms
of (Hertz-like) potentials in outgoing or ingoing {\it radiation
gauges}. In this paper we relate these potentials to what one actually computes
in perturbation theory, i.e and . We explicitly construct
these relations in the nonrotating limit, preparatory to devising a
corresponding approach for building up the perturbed spacetime of a rotating
black hole. We discuss the application of our procedure to second order
perturbation theory and to the study of radiation reaction effects for a
particle orbiting a massive black hole.Comment: 6 Pages, Revtex
Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism
Radiation tails and boundary conditions for black hole evolutions
In numerical computations of Einstein's equations for black hole spacetimes,
it will be necessary to use approximate boundary conditions at a finite
distance from the holes. We point out here that ``tails,'' the inverse
power-law decrease of late-time fields, cannot be expected for such
computations. We present computational demonstrations and discussions of
features of late-time behavior in an evolution with a boundary condition.Comment: submitted to Phys. Rev.
Self-adapting method for the localization of quantum critical points using Quantum Monte Carlo techniques
A generalization to the quantum case of a recently introduced algorithm (Y.
Tomita and Y. Okabe, Phys. Rev. Lett. {\bf 86}, 572 (2001)) for the
determination of the critical temperature of classical spin models is proposed.
We describe a simple method to automatically locate critical points in
(Quantum) Monte Carlo simulations. The algorithm assumes the existence of a
finite correlation length in at least one of the two phases surrounding the
quantum critical point. We illustrate these ideas on the example of the
critical inter-chain coupling for which coupled antiferromagnetic S=1 spin
chains order at T=0. Finite-size scaling relations are used to determine the
exponents, and in agreement with previous
estimates.Comment: 5 pages, 3 figures, published versio
- …